
Simulink® Verification and Validation™

Reference

R2016a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Verification and Validation™ Reference
© COPYRIGHT 2004–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 2010 Online only New for Version 3.0 (Release 2010b)
April 2011 Online only Revised for Version 3.1 (Release 2011a)
September 2011 Online only Revised for Version 3.2 (Release 2011b)
March 2012 Online only Revised for Version 3.3 (Release 2012a)
September 2012 Online only Revised for Version 3.4 (Release 2012b)
March 2013 Online only Revised for Version 3.5 (Release 2013a)
September 2013 Online only Revised for Version 3.6 (Release 2013b)
March 2014 Online only Revised for Version 3.7 (Release 2014a)
October 2014 Online only Revised for Version 3.8 (Release 2014b)
March 2015 Online only Revised for Version 3.9 (Release 2015a)
September 2015 Online only Revised for Version 3.10 (Release 2015b)
October 2015 Online only Rereleased for Version 3.9.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 3.11 (Release 2016a)

v

Contents

Functions — Alphabetical List
1

Block Reference
2

Model Advisor Checks
3

Simulink Verification and Validation Checks 3-2
Simulink Verification and Validation Checks 3-2
Modeling Standards Checks . 3-3
Modeling Standards for MAAB . 3-3
Naming Conventions . 3-4
Model Architecture . 3-4
Model Configuration Options . 3-4
Simulink . 3-5
Stateflow . 3-5
MATLAB Functions . 3-5

DO-178C/DO-331 Checks . 3-7
DO-178C/DO-331 Checks . 3-8
Check model object names . 3-9
Check safety-related optimization settings 3-12
Check safety-related diagnostic settings for solvers 3-16
Check safety-related diagnostic settings for sample time . . . 3-19
Check safety-related diagnostic settings for signal data 3-21
Check safety-related diagnostic settings for parameters . . . 3-25

vi Contents

Check safety-related diagnostic settings for data used for
debugging . 3-28

Check safety-related diagnostic settings for data store
memory . 3-30

Check safety-related diagnostic settings for type conversions 3-32
Check safety-related diagnostic settings for signal

connectivity . 3-34
Check safety-related diagnostic settings for bus connectivity 3-36
Check safety-related diagnostic settings that apply to function-

call connectivity . 3-38
Check safety-related diagnostic settings for compatibility . . 3-40
Check safety-related diagnostic settings for model

initialization . 3-41
Check safety-related diagnostic settings for model

referencing . 3-44
Check safety-related model referencing settings 3-47
Check safety-related code generation settings 3-49
Check safety-related diagnostic settings for saving 3-55
Check for blocks that do not link to requirements 3-57
Check state machine type of Stateflow charts 3-58
Check Stateflow charts for ordering of states and transitions 3-60
Check Stateflow debugging options 3-62
Check usage of lookup table blocks 3-64
Check MATLAB Code Analyzer messages 3-66
Check MATLAB code for global variables 3-68
Check for inconsistent vector indexing methods 3-70
Check for MATLAB Function interfaces with inherited

properties . 3-71
Check MATLAB Function metrics . 3-73
Check for blocks not recommended for C/C++ production code

deployment . 3-75
Check for variant blocks with 'Generate preprocessor

conditionals' active . 3-76
Check Stateflow charts for uniquely defined data objects . . . 3-77
Check usage of Math Operations blocks 3-78
Check usage of Signal Routing blocks 3-81
Check usage of Logic and Bit Operations blocks 3-82
Check usage of Ports and Subsystems blocks 3-84
Display model version information 3-88

IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks . . . 3-89
IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks . . 3-89
Check model object names . 3-91
Display model metrics and complexity report 3-94

vii

Check for unconnected objects . 3-96
Check for root Inports with missing properties 3-98
Check for MATLAB Function interfaces with inherited

properties . 3-100
Check MATLAB Function metrics 3-102
Check for root Inports with missing range definitions 3-104
Check for root Outports with missing range definitions . . . 3-106
Check for blocks not recommended for C/C++ production code

deployment . 3-108
Check usage of Stateflow constructs 3-109
Check state machine type of Stateflow charts 3-115
Check for model objects that do not link to requirements . . 3-117
Check for inconsistent vector indexing methods 3-119
Check MATLAB Code Analyzer messages 3-121
Check MATLAB code for global variables 3-123
Check usage of Math Operations blocks 3-125
Check usage of Signal Routing blocks 3-127
Check usage of Logic and Bit Operations blocks 3-129
Check usage of Ports and Subsystems blocks 3-131
Display configuration management data 3-135

MathWorks Automotive Advisory Board Checks 3-136
MathWorks Automotive Advisory Board Checks 3-138
Check font formatting . 3-139
Check Transition orientations in flow charts 3-141
Check for nondefault block attributes 3-143
Check signal line labels . 3-145
Check for propagated signal labels 3-147
Check default transition placement in Stateflow charts . . . 3-149
Check return value assignments of graphical functions in

Stateflow charts . 3-150
Check entry formatting in State blocks in Stateflow charts 3-151
Check usage of return values from a graphical function in

Stateflow charts . 3-152
Check for pointers in Stateflow charts 3-153
Check for event broadcasts in Stateflow charts 3-154
Check transition actions in Stateflow charts 3-155
Check for MATLAB expressions in Stateflow charts 3-156
Check for indexing in blocks . 3-157
Check file names . 3-159
Check folder names . 3-161
Check for prohibited blocks in discrete controllers 3-162
Check for prohibited sink blocks . 3-164
Check positioning and configuration of ports 3-166

viii Contents

Check for matching port and signal names 3-168
Check whether block names appear below blocks 3-169
Check for mixing basic blocks and subsystems 3-170
Check for unconnected ports and signal lines 3-172
Check position of Trigger and Enable blocks 3-173
Check usage of tunable parameters in blocks 3-174
Check Stateflow data objects with local scope 3-175
Check for Strong Data Typing with Simulink I/O 3-176
Check usage of exclusive and default states in state

machines . 3-177
Check Implement logic signals as Boolean data (vs. double) 3-179
Check model diagnostic parameters 3-180
Check the display attributes of block names 3-183
Check display for port blocks . 3-185
Check subsystem names . 3-186
Check port block names . 3-188
Check character usage in signal labels 3-190
Check character usage in block names 3-192
Check Trigger and Enable block names 3-194
Check for Simulink diagrams using nonstandard display

attributes . 3-195
Check MATLAB code for global variables 3-197
Check visibility of block port names 3-199
Check orientation of Subsystem blocks 3-201
Check usage of Relational Operator blocks 3-202
Check usage of Switch blocks . 3-203
Check usage of buses and Mux blocks 3-204
Check for bitwise operations in Stateflow charts 3-205
Check for comparison operations in Stateflow charts 3-207
Check for unary minus operations on unsigned integers in

Stateflow charts . 3-208
Check for equality operations between floating-point

expressions in Stateflow charts 3-209
Check input and output settings of MATLAB Functions . . 3-210
Check MATLAB Function metrics 3-212
Check for mismatches between names of Stateflow ports and

associated signals . 3-214
Check scope of From and Goto blocks 3-215

Requirements Consistency Checks 3-216
Identify requirement links with missing documents 3-217
Identify requirement links that specify invalid locations within

documents . 3-218

ix

Identify selection-based links having descriptions that do not
match their requirements document text 3-219

Identify requirement links with path type inconsistent with
preferences . 3-221

Identify IBM Rational DOORS objects linked from Simulink
that do not link to Simulink . 3-223

Model Metric Checks . 3-224
Simulink block metric . 3-224
Subsystem metric . 3-226
Library link metric . 3-227
Effective lines of MATLAB code metric 3-228
Stateflow chart objects metric . 3-229
Lines of code for Stateflow blocks metric 3-231
Subsystem depth metric . 3-232
Cyclomatic complexity metric . 3-233
Nondescriptive block name metric 3-235
Data and structure layer separation metric 3-235

Model Metrics API
4

Model Metrics Results API . 4-2

SLCov CSH Entries
5

Simulink Coverage Parameters . 5-2
RecordCoverage . 5-2

Simulink Coverage Parameters . 5-4
CovPath . 5-4

Simulink Coverage Parameters . 5-5
CovSaveName . 5-5

x Contents

Simulink Coverage Parameters . 5-6
CovCompData . 5-6

Simulink Coverage Parameters . 5-7
CovMetricSettings . 5-7

Simulink Coverage Parameters . 5-9
CovFilter . 5-9

Simulink Coverage Parameters . 5-10
CovHTMLOptions . 5-10

Simulink Coverage Parameters . 5-12
CovNameIncrementing . 5-12

Simulink Coverage Parameters . 5-13
CovHtmlReporting . 5-13

Simulink Coverage Parameters . 5-14
CovForceBlockReductionOff . 5-14

Simulink Coverage Parameters . 5-15
CovEnableCumulative . 5-15

Simulink Coverage Parameters . 5-16
CovSaveCumulativeToWorkspaceVar 5-16

Simulink Coverage Parameters . 5-17
CovSaveSingleToWorkspaceVar . 5-17

Simulink Coverage Parameters . 5-18
CovCumulativeVarName . 5-18

Simulink Coverage Parameters . 5-19
CovCumulativeReport . 5-19

Simulink Coverage Parameters . 5-20
CovReportOnPause . 5-20

Simulink Coverage Parameters . 5-21
CovModelRefEnable . 5-21

xi

Simulink Coverage Parameters . 5-22
CovModelRefExcluded . 5-22

Simulink Coverage Parameters . 5-23
CovExternalEMLEnable . 5-23

Simulink Coverage Parameters . 5-24
CovSFcnEnable . 5-24

Simulink Coverage Parameters . 5-25
CovBoundaryAbsTol . 5-25

Simulink Coverage Parameters . 5-26
CovBoundaryRelTol . 5-26

Simulink Coverage Parameters . 5-27
CovUseTimeInterval . 5-27

Simulink Coverage Parameters . 5-28
CovStartTime . 5-28

Simulink Coverage Parameters . 5-29
CovStopTime . 5-29

1

Functions — Alphabetical List

1 Functions — Alphabetical List

1-2

actionCallback
Class: Advisor.authoring.CustomCheck
Package: Advisor.authoring

Register action callback for model configuration check

Syntax

Advisor.authoring.CustomCheck.actionCallback(task)

Description

Advisor.authoring.CustomCheck.actionCallback(task) is used as the action
callback function when registering custom checks that use an XML data file to specify
check behavior.

Examples

This sl_customization.m file registers the action callback for configuration parameter
checks with fix actions.
function defineModelAdvisorChecks

 rec = ModelAdvisor.Check('com.mathworks.Check1');

 rec.Title = 'Test: Check1';

 rec.setCallbackFcn(@(system)(Advisor.authoring.CustomCheck.checkCallback(system)), …

 'None', 'StyleOne');

 rec.TitleTips = 'Example check for check authoring infrastructure.';

 % --- data file input parameters

 rec.setInputParametersLayoutGrid([1 1]);

 inputParam1 = ModelAdvisor.InputParameter;

 inputParam1.Name = 'Data File';

 inputParam1.Value = 'Check1.xml';

 inputParam1.Type = 'String';

 inputParam1.Description = 'Name or full path of XML data file.';

 inputParam1.setRowSpan([1 1]);

 inputParam1.setColSpan([1 1]);

 rec.setInputParameters({inputParam1});

 % -- set fix operation

 actionCallback

1-3

 act = ModelAdvisor.Action;

 act.setCallbackFcn(@(task)(Advisor.authoring.CustomCheck.actionCallback(task)));

 act.Name = 'Modify Settings';

 act.Description = 'Modify model configuration settings.';

 rec.setAction(act);

 mdladvRoot = ModelAdvisor.Root;

 mdladvRoot.register(rec);

end

See Also
Advisor.authoring.DataFile | Advisor.authoring.CustomCheck.checkCallback |
Advisor.authoring.generateConfigurationParameterDataFile

How To
• “Create Check for Model Configuration Parameters”

1 Functions — Alphabetical List

1-4

addCheck
Class: ModelAdvisor.FactoryGroup
Package: ModelAdvisor

Add check to folder

Syntax

addCheck(fg_obj, check_ID)

Description

addCheck(fg_obj, check_ID) adds checks, identified by check_ID, to the folder
specified by fg_obj, which is an instantiation of the ModelAdvisor.FactoryGroup
class.

Examples

Add three checks to rec:
% --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

.

.

.

addCheck(rec, 'com.mathworks.sample.Check1');

addCheck(rec, 'com.mathworks.sample.Check2');

addCheck(rec, 'com.mathworks.sample.Check3');

 addGroup

1-5

addGroup
Class: ModelAdvisor.Group
Package: ModelAdvisor

Add subfolder to folder

Syntax

addGroup(group_obj, child_obj)

Description

addGroup(group_obj, child_obj) adds a new subfolder, identified by
child_obj, to the folder specified by group_obj, which is an instantiation of the
ModelAdvisor.Group class.

Examples

Add three checks to rec:

group_obj = ModelAdvisor.Group('com.mathworks.sample.group');

.

.

.

addGroup(group_obj, 'com.mathworks.sample.subgroup1');

addGroup(group_obj, 'com.mathworks.sample.subgroup2');

addGroup(group_obj, 'com.mathworks.sample.subgroup3');

To add ModelAdvisor.Task objects to a group using addGroup:

mdladvRoot = ModelAdvisor.Root();

% MAT1, MAT2, and MAT3 are registered ModelAdvisor.Task objects

% Create the group 'My Group'

MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');

MAG.DisplayName='My Group';

1 Functions — Alphabetical List

1-6

% Add the first task to the 'My Group' folder

MAG.addTask(MAT1);

% Create a subfolder 'Folder1'

MAGSUB1 = ModelAdvisor.Group('com.mathworks.sample.Folder1');

MAGSUB1.DisplayName='Folder1';

% Add the second task to Folder1

MAGSUB1.addTask(MAT2);

% Create a subfolder 'Folder2'

MAGSUB2 = ModelAdvisor.Group('com.mathworks.sample.Folder2');

MAGSUB2.DisplayName='Folder2';

% Add the third task to Folder2

MAGSUB2.addTask(MAT3);

% Register the two subfolders. This must be done before calling addGroup

mdladvRoot.register(MAGSUB1);

mdladvRoot.register(MAGSUB2);

% Invoke addGroup to place the subfolders under 'My Group'

MAG.addGroup(MAGSUB1);

MAG.addGroup(MAGSUB2);

mdladvRoot.publish(MAG); % publish under Root

 addItem

1-7

addItem
Class: ModelAdvisor.List
Package: ModelAdvisor

Add item to list

Syntax

addItem(element)

Description

addItem(element) adds items to the list created by the ModelAdvisor.List
constructor.

Input Arguments

element Specifies an element to be added to a list in one of the following:

• Element
• Cell array of elements. When you add a cell array to a list,

they form different rows in the list.
• String

Examples
subList = ModelAdvisor.List();

setType(subList, 'numbered')

addItem(subList, ModelAdvisor.Text('Sub entry 1', {'pass','bold'}));

addItem(subList, ModelAdvisor.Text('Sub entry 2', {'pass','bold'}));

See Also
“Model Advisor Customization”

1 Functions — Alphabetical List

1-8

How To
• “Create Model Advisor Checks”

 addItem

1-9

addItem
Class: ModelAdvisor.Paragraph
Package: ModelAdvisor

Add item to paragraph

Syntax

addItem(text, element)

Description

addItem(text, element) adds an element to text. element is one of the following:

• String
• Element
• Cell array of elements

Examples

Add two lines of text:

result = ModelAdvisor.Paragraph;

addItem(result, [resultText1 ModelAdvisor.LineBreak resultText2]);

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-10

addProcedure
Class: ModelAdvisor.Group
Package: ModelAdvisor

Add procedure to folder

Syntax

addProcedure(group_obj, procedure_obj)

Description

addProcedure(group_obj, procedure_obj) adds a procedure, specified by
procedure_obj, to the folder group_obj. group_obj is an instantiation of the
ModelAdvisor.Group class.

Examples

Add three procedures to MAG.
MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');

MAP1=ModelAdvisor.Procedure('com.mathworks.sample.procedure1');

MAP2=ModelAdvisor.Procedure('com.mathworks.sample.procedure2');

MAP3=ModelAdvisor.Procedure('com.mathworks.sample.procedure3');

addProcedure(MAG, MAP1);

addProcedure(MAG, MAP2);

addProcedure(MAG, MAP3);

 addProcedure

1-11

addProcedure
Class: ModelAdvisor.Procedure
Package: ModelAdvisor

Add subprocedure to procedure

Syntax

addProcedure(procedure1_obj, procedure2_obj)

Description

addProcedure(procedure1_obj, procedure2_obj) adds a procedure, specified
by procedure2_obj, to the procedure procedure1_obj. procedure2_obj and
procedure1_obj are instantiations of the ModelAdvisor.Procedure class.

Examples

Add three procedures to MAP.
MAP = ModelAdvisor.Procedure('com.mathworks.sample.ProcedureSample');

MAP1=ModelAdvisor.Procedure('com.mathworks.sample.procedure1');

MAP2=ModelAdvisor.Procedure('com.mathworks.sample.procedure2');

MAP3=ModelAdvisor.Procedure('com.mathworks.sample.procedure3');

addProcedure(MAP, MAP1);

addProcedure(MAP, MAP2);

addProcedure(MAP, MAP3);

1 Functions — Alphabetical List

1-12

addRow
Class: ModelAdvisor.FormatTemplate
Package: ModelAdvisor

Add row to table

Syntax

addRow(ft_obj, {item1, item2, ..., itemn})

Description

addRow(ft_obj, {item1, item2, ..., itemn}) is an optional method that
adds a row to the end of a table in the result. ft_obj is a handle to the template object
previously created. {item1, item2, ..., itemn} is a cell array of strings and objects
to add to the table. The order of the items in the array determines which column the item
is in. If you do not add data to the table, the Model Advisor does not display the table in
the result.

Note: Before adding rows to a table, you must specify column titles using the
setColTitle method.

Examples

Find all of the blocks in the model and create a table of the blocks:
% Create FormatTemplate object, specify table format

ft = ModelAdvisor.FormatTemplate('TableTemplate');

% Add information to the table

setTableTitle(ft, {'Blocks in Model'});

setColTitles(ft, {'Index', 'Block Name'});

% Find all the blocks in the system and add them to a table.

allBlocks = find_system(system);

for inx = 2 : length(allBlocks)

 % Add information to the table

 addRow(ft, {inx-1,allBlocks(inx)});

 addRow

1-13

end

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

1 Functions — Alphabetical List

1-14

addTask
Class: ModelAdvisor.Group
Package: ModelAdvisor

Add task to folder

Syntax

addTask(group_obj, task_obj)

Description

addTask(group_obj, task_obj) adds a task, specified by task_obj, to the folder
group_obj.group_obj is an instantiation of the ModelAdvisor.Group class.

Examples

Add three tasks to MAG.

MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');

addTask(MAG, MAT1);

addTask(MAG, MAT2);

addTask(MAG, MAT3);

 addTask

1-15

addTask
Class: ModelAdvisor.Procedure
Package: ModelAdvisor

Add task to procedure

Syntax

addTask(procedure_obj, task_obj)

Description

addTask(procedure_obj, task_obj) adds a task, specified by task_obj, to
procedure_obj.procedure_obj is an instantiation of the ModelAdvisor.Procedure
class.

Examples

Add three tasks to MAP.
MAP = ModelAdvisor.Procedure('com.mathworks.sample.ProcedureSample');

MAT1=ModelAdvisor.Task('com.mathworks.sample.task1');

MAT2=ModelAdvisor.Task('com.mathworks.sample.task2');

MAT3=ModelAdvisor.Task('com.mathworks.sample.task3');

addTask(MAP, MAT1);

addTask(MAP, MAT2);

addTask(MAP, MAT3);

1 Functions — Alphabetical List

1-16

Advisor.Application class
Package: Advisor

Run Model Advisor across model hierarchy

Description

Use instances of Advisor.Application to run Model Advisor checks across a model
hierarchy. You can use Advisor.Application to:

• Run checks on referenced models.
• Select model components for Model Advisor analysis.
• Select checks to run during Model Advisor analysis.

Consider using Advisor.Application if you have a large model with subsystems and
model references. Advisor.Application does not run checks on library models. If you
want to run checks on multiple independent models that are not in a model reference
hierarchy or you want to leverage parallel processing, use ModelAdvisor.run to run
Model Advisor checks on your model.

The Advisor.Application methods use the following definitions:

• Model component — Model in the system hierarchy. Models that the root model
references and that setAnalysisroot specifies are model components.

• Check instance — Instantiation of a ModelAdvisor.Check object in the Model
Advisor configuration. Each check instance has an instance ID. When you change the
Model Advisor configuration, the instance ID can change.

Construction

To create an Advisor.Application object, use Advisor.Manager.createApplication.

Properties

AnalysisRoot — Name of root model in the model hierarchy to analyze
string

 Advisor.Application class

1-17

Name of root model in the model hierarchy to analyze, as specified by the
Advisor.Application.setAnalysisRoot method. This property is read only.

ID — Unique identifier
string

Unique identifier for the Advisor.Application object. This property is read only.

UseTempDir — Run analysis in a temporary working folder
false (default) | true

Run analysis in a temporary working folder. Specified by the
Advisor.Manager.createApplication method. This property is read only.

Data Types: logical

Methods

delete Delete Advisor.Application object
deselectCheckInstances Clear check instances from Model Advisor

analysis
deselectComponents Clear model components from Model

Advisor analysis
generateReport Generate report for Model Advisor analysis
getCheckInstanceIDs Obtain check instance IDs
getResults Access Model Advisor analysis results
loadConfiguration Load Model Advisor configuration
run Run Model Advisor analysis on model

components
selectCheckInstances Select check instances to use in Model

Advisor analysis
selectComponents Select model components for Model Advisor

analysis
setAnalysisRoot Specify model hierarchy for Model Advisor

analysis

1 Functions — Alphabetical List

1-18

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB® documentation.

Examples

Run Model Advisor Checks on Referenced Model

This example shows how to run a check on model sldemo_mdlref_counter referenced
from sldemo_mdlref_basic.

1 In the Command Window, open model sldemo_mdlref_basic and referenced
model sldemo_mdlref_counter.

open_system('sldemo_mdlref_basic');

open_system('sldemo_mdlref_counter');

2 Save a copy of the models to a work folder, renaming them to mdlref_basic and
mdlref_counter.

save_system('sldemo_mdlref_basic','mdlref_basic');

save_system('sldemo_mdlref_counter','mdlref_counter');

3 In mdlref_basic, change model reference from sldemo_mdlref_counter to
mdlref_counter. Save mdlref_basic.

set_param('mdlref_basic/CounterA','ModelName','mdlref_counter');

set_param('mdlref_basic/CounterB','ModelName','mdlref_counter');

set_param('mdlref_basic/CounterC','ModelName','mdlref_counter');

save_system('mdlref_basic');

4 Set root model to mdlref_basic.

RootModel='mdlref_basic';

5 Create an Application object.

app = Advisor.Manager.createApplication();

6 Set root analysis.

setAnalysisRoot(app,'Root',RootModel);

7 Clear all check instances from Model Advisor analysis.

deselectCheckInstances(app);

 Advisor.Application class

1-19

8 Select check Identify unconnected lines, input ports, and output ports using
check instance ID.

instanceID = getCheckInstanceIDs(app,'mathworks.design.UnconnectedLinesPorts');

checkinstanceID = instanceID(1);

selectCheckInstances(app,'IDs',checkinstanceID);

9 Run Model Advisor analysis.

run(app);

10 Get analysis results.

getResults(app);

11 Generate and view the Model Advisor report. The Model Advisor runs the check on
both mdlref_basic and mdlref_counter.

report = generateReport(app);

web(report)

12 Close the models.

close_system('mdlref_basic');

close_system('mdlref_counter');

Run Model Advisor Checks on a Subsystem

This example shows how to run a check on subsystem CounterA referenced from
sldemo_mdlref_basic.

1 In the Command Window, open model sldemo_mdlref_basic.

open_system('sldemo_mdlref_basic');

2 Set root model to sldemo_mdlref_basic.

RootModel='sldemo_mdlref_basic';

3 Create an Application object.

app = Advisor.Manager.createApplication();

4 Set root analysis to subsystem sldemo_mdlref_basic/CounterA.

setAnalysisRoot(app,'Root','sldemo_mdlref_basic/CounterA','RootType','Subsystem');

5 Clear all check instances from Model Advisor analysis.

deselectCheckInstances(app);

6 Select check Identify unconnected lines, input ports, and output ports using
check instance ID.

1 Functions — Alphabetical List

1-20

instanceID = getCheckInstanceIDs(app,'mathworks.design.UnconnectedLinesPorts');

checkinstanceID = instanceID(1);

selectCheckInstances(app,'IDs',checkinstanceID);

7 Run Model Advisor analysis.

run(app);

8 Get analysis results.

getResults(app);

9 Generate and view the Model Advisor report. The Model Advisor runs the check on
subsystem sldemo_mdlref_basic/CounterA.

report = generateReport(app);

web(report)

10 Close the model.

close_system('sldemo_mdlref_basic');

More About
• Class Attributes
• Property Attributes

Introduced in R2015b

 Advisor.authoring.generateConfigurationParameterDataFile

1-21

Advisor.authoring.generateConfigurationParameterDataFile

Package: Advisor.authoring

Generate XML data file for custom configuration parameter check

Syntax

Advisor.authoring.generateConfigurationParameterDataFile(dataFile,

source)

Advisor.authoring.generateConfigurationParameterDataFile(dataFile,

source,Name,Value)

Description

Advisor.authoring.generateConfigurationParameterDataFile(dataFile,

source) generates an XML data file named dataFile specifying the configuration
parameters for source. The data file uses tagging to specify the configuration parameter
settings you want. When you create a check for configuration parameters, you use the
data file. Each model configuration parameter specified in the data file is a subcheck.

Advisor.authoring.generateConfigurationParameterDataFile(dataFile,

source,Name,Value) generates an XML data file named dataFile specifying the
configuration parameters for source. It also specifies additional options by one or more
optional Name,Value arguments. The data file uses tagging to specify the configuration
parameter settings you want. When you create a check for configuration parameters,
you use the data file. Each model configuration parameter specified in the data file is a
subcheck.

Examples

Create data file for configuration parameter check

Create a data file with all the configuration parameters. You use the data file to create a
configuration parameter.

1 Functions — Alphabetical List

1-22

model = 'vdp';

dataFile = 'myDataFile.xml';

Advisor.authoring.generateConfigurationParameterDataFile(...

 dataFile, model);

Data file myDataFile.xml has tagging specifying subcheck information for each
configuration parameter. myDataFile.xml specifies the configuration parameters
settings you want. The following specifies XML tagging for configuration parameter
AbsTol. If the configuration parameter is set to 1e-6, the configuration parameter
subcheck specified in myDataFile.xml passes.

<!-- Absolute tolerance: (AbsTol)-->

 <PositiveModelParameterConstraint>

 <parameter>AbsTol</parameter>

 <value>1e-6</value>

 </PositiveModelParameterConstraint>

Create data file for Solver pane configuration parameter check with fix action

Create a data file with configuration parameters for the Solver pane. You use the data
file to create a Solver pane configuration parameter check with fix actions.

model = 'vdp';

dataFile = 'myDataFile.xml';

Advisor.authoring.generateConfigurationParameterDataFile(...

 dataFile, model, 'Pane', 'Solver', 'FixValues', true);

Data file myDataFile.xml has tagging specifying subcheck information for each
configuration parameter. myDataFile.xml specifies the configuration parameters
settings that you want. The following specifies XML tagging for configuration parameter
AbsTol. If the configuration parameter is set to 1e-6, the configuration parameter
subcheck specified in myDataFile.xml passes. If the subcheck does not pass, the check
fix action modifies the configuration parameter to 1e-6.

<!-- Absolute tolerance: (AbsTol)-->

 <PositiveModelParameterConstraint>

 <parameter>AbsTol</parameter>

 <value>1e-6</value>

 <fixvalue>1e-6</fixvalue>

 </PositiveModelParameterConstraint>

• “Create Check for Model Configuration Parameters”

 Advisor.authoring.generateConfigurationParameterDataFile

1-23

Input Arguments

dataFile — Name of data file to create
string

Name of XML data file to create, specified as a string.
Example: 'myDataFile.xml'

source — Name of model or configuration set
string | Simulink.ConfigSet

Name of model or Simulink.ConfigSet object used to specify configuration parameters

Example: 'vdp'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Pane', 'Solver', 'FixValues', true specifies a dataFile with Solver
pane configuration parameters and fix tagging.

'Pane' — Limit the configuration parameters in the dataFile
Solver | Data Import/Export | Optimization | Diagnostics | Hardware
Implementation | Model Referencing | Code Generation

Option to limit the configuration parameters in the data file to the pane specified as the
comma-separated pair of 'Pane' and one of the following:

• Solver

• Data Import/Export

• Optimization

• Diagnostics

• Hardware Implementation

• Model Referencing

• Code Generation

1 Functions — Alphabetical List

1-24

Example: 'Pane','Solver' limits the dataFile to configuration parameters on the
Solver pane.
Data Types: char

'FixValues' — Create fix tagging in the dataFile
false | true

Setting FixValues to true provides the dataFile with fix tagging. When you generate
a custom configuration parameter check using a dataFile with fix tagging, each
configuration parameter subcheck has a fix action. Specified as the comma-separated
pair of 'FixValues' and either true or false.

Example: 'FixValues,true specifies fix tagging in the dataFile.

Data Types: logical

More About
• “Data File for Configuration Parameter Check”

 Advisor.authoring.CustomCheck class

1-25

Advisor.authoring.CustomCheck class
Package: Advisor.authoring

Define custom check

Description

Instances of the Advisor.authoring.CustomCheck class provide a container for static
methods used as callback functions when defining a configuration parameter check. The
configuration parameter check is defined in an XML data file.

Methods

actionCallback Register action callback for model
configuration check

checkCallback Register check callback for model
configuration check

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

See Also
Advisor.authoring.DataFile |
Advisor.authoring.generateConfigurationParameterDataFile

How To
• “Create Check for Model Configuration Parameters”

1 Functions — Alphabetical List

1-26

Advisor.authoring.DataFile class
Package: Advisor.authoring

Interact with data file for model configuration checks

Description

The Advisor.authoring.DataFile class provides a container for a static method used
when interacting with the data file for configuration parameter checks.

Methods

validate Validate XML data file used for model
configuration check

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

See Also
Advisor.authoring.CustomCheck |
Advisor.authoring.generateConfigurationParameterDataFile

How To
• “Create Check for Model Configuration Parameters”

 Advisor.Manager class

1-27

Advisor.Manager class
Package: Advisor

Manage applications

Description

The Advisor.Manager class defines application objects.

Methods

createApplication Create Advisor.Application object
getApplication Return handle to Advisor.Application

object

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

More About
• Class Attributes
• Property Attributes

Introduced in R2015b

1 Functions — Alphabetical List

1-28

allNames
Class: cv.cvdatagroup
Package: cv

Get names of all models associated with cvdata objects in cv.cvdatagroup

Syntax

models = allNames(cvdg)

Description

models = allNames(cvdg) returns a cell array of strings identifying all model names
associated with the cvdata objects in cvdg, an instantiation of the cv.cvdatagroup
class.

Examples

Add three cvdata objects to cvdg and return a cell array of model names:

a = cvdata;

b = cvdata;

c = cvdata;

cvdg = cv.cvdatagroup;

add (cvdg, a, b, c);

model_names = allNames(cvdg)

 checkCallback

1-29

checkCallback
Class: Advisor.authoring.CustomCheck
Package: Advisor.authoring

Register check callback for model configuration check

Syntax

Advisor.authoring.CustomCheck.checkCallback(system)

Description

Advisor.authoring.CustomCheck.checkCallback(system) is used as the check
callback function when registering custom checks that use an XML data file to specify
check behavior.

Examples

This sl_customization.m file registers a configuration parameter check using
Advisor.authoring.CustomCheck.checkCallback(system).
function defineModelAdvisorChecks

 rec = ModelAdvisor.Check('com.mathworks.Check1');

 rec.Title = 'Test: Check1';

 rec.setCallbackFcn(@(system)(Advisor.authoring.CustomCheck.checkCallback(system)), …

 'None', 'StyleOne');

 rec.TitleTips = 'Example check for check authoring infrastructure.';

 % --- data file input parameters

 rec.setInputParametersLayoutGrid([1 1]);

 inputParam1 = ModelAdvisor.InputParameter;

 inputParam1.Name = 'Data File';

 inputParam1.Value = 'Check1.xml';

 inputParam1.Type = 'String';

 inputParam1.Description = 'Name or full path of XML data file.';

 inputParam1.setRowSpan([1 1]);

 inputParam1.setColSpan([1 1]);

 rec.setInputParameters({inputParam1});

 % -- set fix operation

1 Functions — Alphabetical List

1-30

 act = ModelAdvisor.Action;

 act.setCallbackFcn(@(task)(Advisor.authoring.CustomCheck.actionCallback(task)));

 act.Name = 'Modify Settings';

 act.Description = 'Modify model configuration settings.';

 rec.setAction(act);

 mdladvRoot = ModelAdvisor.Root;

 mdladvRoot.register(rec);

end

See Also
Advisor.authoring.DataFile | Advisor.authoring.CustomCheck.actionCallback |
Advisor.authoring.generateConfigurationParameterDataFile

How To
• “Create Check for Model Configuration Parameters”

 complexityinfo

1-31

complexityinfo
Retrieve cyclomatic complexity coverage information from cvdata object

Syntax

complexity = complexityinfo(cvdo, object)

Description

complexity = complexityinfo(cvdo, object) returns complexity coverage
results from the cvdata object cvdo for the model component object.

Input Arguments

cvdo

cvdata object

object

The object argument specifies an object in the model or Stateflow® chart that received
decision coverage. Valid values for object include the following:

Object Specification Description

BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink® API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object from a singly

instantiated Stateflow chart
{BlockPath, sfID} Cell array with the path to a Stateflow chart or

atomic subchart and the ID of an object contained
in that chart or subchart

1 Functions — Alphabetical List

1-32

Object Specification Description

{BlockPath, sfObj} Cell array with the path to a Stateflow chart
or subchart and a Stateflow object API handle
contained in that chart or subchart

[BlockHandle, sfID] Array with a handle to a Stateflow chart or
atomic subchart and the ID of an object contained
in that chart or subchart

Output Arguments

complexity

If cvdo does not contain cyclomatic complexity coverage results for object, complexity
is empty.

If cvdo contains cyclomatic complexity coverage results for object, complexity is a
two-element vector of the form [total_complexity local_complexity]:

total_complexity Cyclomatic complexity coverage for object and its
descendants (if any)

local_complexity Cyclomatic complexity coverage for object

If object has variable-size signals, complexity also contains the variable complexity.

Examples

Open the sldemo_fuelsys model and create the test specification object testObj.
Enable decision, condition, and MCDC coverage for sldemo_fuelsys and execute
testObj using cvsim. Use complexityinfo to retrieve cyclomatic complexity results
for the Throttle subsystem. The Throttle subsystem itself does not record cyclomatic
complexity coverage results, but the contents of the subsystem do record cyclomatic
complexity coverage.

mdl = 'sldemo_fuelsys';

open_system(mdl);

testObj = cvtest(mdl)

 complexityinfo

1-33

testObj.settings.decision = 1;

testObj.settings.condition = 1;

testObj.settings.mcdc = 1;

data = cvsim(testObj);

blk_handle = get_param([mdl, ...

 '/Engine Gas Dynamics/Throttle & Manifold/Throttle'],...

 'Handle');

coverage = complexityinfo(data, blk_handle);

coverage

Alternatives

Use the Coverage Settings dialog box to collect and display cyclomatic complexity
coverage results in the coverage report:

1 Open the model.
2 In the Model Editor, select Analysis > Coverage > Settings.
3 On the Coverage tab, select Coverage for this model.
4 Under Coverage metrics, select:

• Decision
• Condition
• MCDC

5 On the Reporting tab, click HTML Settings.
6 In the HTML Settings dialog box, select:

• Include cyclomatic complexity numbers in summary
• Include cyclomatic complexity numbers in block details

7 Click OK to close the HTML Settings dialog box and save your changes.
8 Click OK to close the Coverage Settings dialog box and save your changes.
9 Simulate the model and review the results in the HTML report.

More About
• “Cyclomatic Complexity”

1 Functions — Alphabetical List

1-34

See Also
conditioninfo | cvsim | decisioninfo | getCoverageInfo | mcdcinfo |
sigrangeinfo | sigsizeinfo | tableinfo

 conditioninfo

1-35

conditioninfo
Retrieve condition coverage information from cvdata object

Syntax

coverage = conditioninfo(cvdo, object)

coverage = conditioninfo(cvdo, object, ignore_descendants)

[coverage, description] = conditioninfo(cvdo, object)

Description

coverage = conditioninfo(cvdo, object) returns condition coverage results from
the cvdata object cvdo for the model component specified by object.

coverage = conditioninfo(cvdo, object, ignore_descendants) returns
condition coverage results for object, depending on the value of ignore_descendants.

[coverage, description] = conditioninfo(cvdo, object) returns condition
coverage results and textual descriptions of each condition in object.

Input Arguments

cvdo

cvdata object

object

An object in the Simulink model or Stateflow diagram that receives decision coverage.
Valid values for object are as follows:

BlockPath Full path to a Simulink model or block
BlockHandle Handle to a Simulink model or block
slObj Handle to a Simulink API object
sfID Stateflow ID

1 Functions — Alphabetical List

1-36

sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a Stateflow

chart or atomic subchart and the ID of an
object contained in that chart or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow
chart or atomic subchart and a Stateflow
object API handle contained in that chart
or subchart

[BlockHandle, sfID] Array with a handle to a Stateflow chart
or atomic subchart and the ID of an object
contained in that chart or subchart

ignore_descendants

Logical value that specifies whether to ignore the coverage of descendant objects
1 to ignore coverage of descendant objects
0 (default) to collect coverage of descendant objects

Output Arguments

coverage

The value of coverage is a two-element vector of form [covered_outcomes
total_outcomes]. coverage is empty if cvdo does not contain condition coverage
results for object. The two elements are:

covered_outcomes Number of condition outcomes satisfied for
object

total_outcomes Total number of condition outcomes for
object

description

A structure array with the following fields:

text String describing a condition or the block
port to which it applies

 conditioninfo

1-37

trueCnts Number of times the condition was true in
a simulation

falseCnts Number of times the condition was false in
a simulation

Examples

The following example opens the slvnvdemo_cv_small_controller example model,
creates the test specification object testObj, enables condition coverage for testObj,
and executes testObj. Then retrieve the condition coverage results for the Logic block
(in the Gain subsystem) and determine its percentage of condition outcomes covered:

mdl = 'slvnvdemo_cv_small_controller';

open_system(mdl)

testObj = cvtest(mdl)

testObj.settings.condition = 1;

data = cvsim(testObj)

blk_handle = get_param([mdl, '/Gain/Logic'], 'Handle');

cov = conditioninfo(data, blk_handle)

percent_cov = 100 * cov(1) / cov(2)

Alternatives

Use the Coverage Settings dialog box to collect condition coverage for a model:

1 Open the model for which you want to collect condition coverage.
2 In the Model Editor, select Analysis > Coverage > Settings.
3 On the Coverage tab, select Coverage for this model.
4 Under Coverage metrics, select Condition.
5 On the Results and Reporting tabs, specify the output you need.
6 Click OK to close the Coverage Settings dialog box and save your changes.
7 Simulate the model and review the results.

More About
• “Condition Coverage (CC)”

1 Functions — Alphabetical List

1-38

See Also
complexityinfo | cvsim | decisioninfo | getCoverageInfo | mcdcinfo |
overflowsaturationinfo | sigrangeinfo | sigsizeinfo | tableinfo

 createApplication

1-39

createApplication
Class: Advisor.Manager
Package: Advisor

Create Advisor.Application object

Syntax

app = Advisor.Manager.createApplication()

app = Advisor.Manager.createApplication(Name,Value)

Description

app = Advisor.Manager.createApplication() constructs an
Advisor.Application object.

app = Advisor.Manager.createApplication(Name,Value) constructs an
Advisor.Application object that operates in a temporary working folder.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'UseTempDir',true specifies that Advisor.Application object operates in
a temporary working folder.

'UseTempDir' — Create Advisor.Application object that operates in a temporary
working folder
false (default) | true
Data Types: logical

1 Functions — Alphabetical List

1-40

Output Arguments

app — Application
Advisor.Application object

Constructed Advisor.Application object.

See Also
Advisor.Application | Advisor.Manager.getApplication

Introduced in R2015b

 cv.cvdatagroup class

1-41

cv.cvdatagroup class
Package: cv

Collection of cvdata objects

Description

Instances of this class contain a collection of cvdata objects. Each cvdata object
contains coverage results for a particular model in the model hierarchy.

Construction

cv.cvdatagroup Create collection of cvdata objects for
model reference hierarchy

Methods

allNames Get names of all models associated with
cvdata objects in cv.cvdatagroup

get Get cvdata object
getAll Get all cvdata objects

Properties

name cv.cvdatagroup object name

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

1 Functions — Alphabetical List

1-42

cv.cvdatagroup
Class: cv.cvdatagroup
Package: cv

Create collection of cvdata objects for model reference hierarchy

Syntax

cvdg = cv.cvdatagroup(cvdo1, cvdo2,...)

Description

cvdg = cv.cvdatagroup(cvdo1, cvdo2,...) creates an instantiation of the
cv.cvdatagroup class (cvdg) that contains the cvdata objects cvdo1, cvdo2, etc. A
cvdata object contains results of the simulation runs.

Examples

Create an instantiation of the cv.cvdatagroup class and add two cvdata objects to it:

a = cvdata;

b = cvdata;

cvdg = cv.cvdatagroup(a, b);

 cvexit

1-43

cvexit
Exit model coverage environment

Syntax

cvexit

Description

cvexit exits the model coverage environment. Issuing this command closes the
Coverage Display window and removes coloring from a block diagram that displays its
model coverage results.

1 Functions — Alphabetical List

1-44

cvhtml

Produce HTML report from model coverage objects

Syntax

cvhtml(file, cvdo)

cvhtml(file, cvdo1, cvdo2, ...)

cvhtml(file, cvdo1, cvdo2, ..., options)

Description

cvhtml(file, cvdo) creates an HTML report of the coverage results in the cvdata
or cv.cvdatagroup object cvdo when you run model coverage in simulation. cvhtml
saves the coverage results in file. The model must be open when you use cvhtml to
generate its coverage report.

cvhtml(file, cvdo1, cvdo2, ...) creates a combined report of several cvdata
objects. The results from each object appear in a separate column of the HTML report.
Each cvdata object must correspond to the same root model or subsystem. Otherwise,
the function fails.

cvhtml(file, cvdo1, cvdo2, ..., options) creates a combined report of several
cvdata objects using the report options specified by options.

Input Arguments

cvdo

A cv.cvdatagroup object

file

String specifying the HTML file in the MATLAB current folder where cvhtml stores the
results

 cvhtml

1-45

Default: []

options

Specify the report options that you specify in options:

• To enable an option, set it to 1 (e.g., '-hTR=1').
• To disable an option, set it to 0 (e.g., '-bRG=0').
• To specify multiple report options, list individual options in a single options string

separated by commas or spaces (e.g., '-hTR=1 -bRG=0 -scm=0').

Option Description Default

-sRT Show report on

-sVT Web view mode off

-aTS Include each test in the model summary on

-bRG Produce bar graphs in the model summary on

-bTC Use two color bar graphs (red, blue) on

-hTR Display hit/count ratio in the model summary off

-nFC Do not report fully covered model objects off

-scm Include cyclomatic complexity numbers in summary on

-bcm Include cyclomatic complexity numbers in block
details

on

-xEv Filter Stateflow events from report off

Examples

Make sure you have write access to the default MATLAB folder. Create a cumulative
coverage report for the slvnvdemo_cv_small_controller mode and save it as
ratelim_coverage.html:

model = 'slvnvdemo_cv_small_controller';

open_system(model);

cvt = cvtest(model);

cvd = cvsim(cvt);

outfile = 'ratelim_coverage.html';

cvhtml(outfile, cvd);

1 Functions — Alphabetical List

1-46

Alternatives

Use the Coverage Settings dialog box to create a model coverage report in an HTML file:

1 Open the model for which you want a model coverage report.
2 In the Simulink Editor, select Analysis > Coverage > Settings.
3 On the Coverage tab, select Coverage for this model.
4 On the Report tab, select Generate HTML report.
5 Click OK to close the Coverage Settings dialog box and save your changes.
6 Simulate the model and review the generated report.

More About
• “Create HTML Reports with cvhtml”

See Also
cv.cvdatagroup | cvsim | cvmodelview

 cvload

1-47

cvload
Load coverage tests and stored results into memory

Syntax

[tests, data] = cvload(filename)

[tests, data] = cvload(filename, restoretotal)

Description

[tests, data] = cvload(filename) loads the tests and data stored in the text
file filename.cvt. tests is a cell array of cvtest objects that are loaded. data is a
cell array of cvdata objects that are loaded. data has the same size as tests, but if a
particular test has no results, data can contain empty elements.

[tests, data] = cvload(filename, restoretotal) restores or clears the
cumulative results from prior runs, depending on the value of restoretotal. If
restoretotal is 1, cvload restores the cumulative results from prior runs. If
restoretotal is unspecified or 0, cvload clears the model's cumulative results.

The following are special considerations for using the cvload command:

• If a model with the same name exists in the coverage database, the software loads
only the compatible results that reference the existing model to prevent duplication.

• If the Simulink models referenced from the file are open but do not exist in the
coverage database, the coverage tool resolves the links to the existing models.

• When you are loading several files that reference the same model, the software loads
only the results that are consistent with the earlier files.

Examples

Store coverage results in cvtest and cvdata objects:

[test_objects, data_objects] = cvload(test_results, 1);

1 Functions — Alphabetical List

1-48

More About
• “Load Stored Coverage Test Results with cvload”

See Also
cvsave

 cvmodelview

1-49

cvmodelview
Display model coverage results with model coloring

Syntax

cvmodelview(cvdo)

Description

cvmodelview(cvdo) displays coverage results from the cvdata object cvdo by coloring
the objects in the model that have model coverage results.

Examples

Open the slvnvdemo_cv_small_controller example model, create the test
specification object testObj, and execute testObj to collect model coverage.
Run cvmodelview to color the model objects for which you collect model coverage
information:

mdl = 'slvnvdemo_cv_small_controller';

open_system(mdl)

testObj = cvtest(mdl)

data = cvsim(testObj)

cvmodelview(data)

Alternatives

Use the Coverage Settings dialog box to display model coverage results by coloring
objects:

1 Open the model.
2 Select Analysis > Coverage > Settings.
3 On the Coverage tab, select Coverage for this model.

1 Functions — Alphabetical List

1-50

4 On the Results tab, select Display coverage results using model coloring.
5 Click OK to close the Coverage Settings dialog box and save your changes.
6 Simulate the model and review the results.

More About
• “View Coverage Results in a Model”

See Also
cvhtml | cvsim

 cvresults

1-51

cvresults
Returns active coverage data, clears and loads active coverage data from a file

Syntax

[CVDATA, CVCUMDATA] = cvresults(MODELNAME)

[cvresults(MODELNAME, 'clear')

cvresults(MODELNAME, 'load', filename)

Description

[CVDATA, CVCUMDATA] = cvresults(MODELNAME) returns the active single-run
coverage data CVDATA and cumulative coverage data CVCUMDATA.

[cvresults(MODELNAME, 'clear') clears the active coverage data.

cvresults(MODELNAME, 'load', filename) loads the active coverage data from a
.cvt file.

1 Functions — Alphabetical List

1-52

cvsave
Save coverage tests and results to file

Syntax

cvsave(filename, model)

cvsave(filename, cvd)

cvsave(filename, cvto1, cvto2, ...)

cvsave(filename, cell_array{ :})

Description

cvsave(filename, model) saves all the tests (cvtest objects) and results (cvdata
objects) related to model in the text file filename.cvt. model is a handle to or name of
a Simulink model.

cvsave(filename, cvd) saves all the results (cvdata objects) for the active model
in the text file filename.cvt. cvsave also saves information about any referenced
models.

cvsave(filename, cvto1, cvto2, ...) saves multiple cvtest objects in the text
file filename.cvt. cvsave also saves information about any referenced models.

cvsave(filename, cell_array{ :}) saves the test results stored in each element
of cell_array to the file filename.cvt. Each element in cell_array contains test
results for a cvdata object.

Input Arguments

filename

String containing the name of the file in which to save the data. cvsave appends the
extension .cvt to the string when saving the file.

model

Handle to a Simulink model

 cvsave

1-53

cvd

cvdata object

cvto

cvtest object

cell_array

Cell array of cvtest objects

Examples

Save coverage results for the slvnvdemo_cv_small_controller model in
ratelim_testdata.cvt:

model = 'slvnvdemo_cv_small_controller';

open_system(model);

cvt = cvtest(model);

cvd = cvsim(cvt);

cvsave('ratelim_testdata', model);

Save cumulative coverage results for the Adjustable Rate Limiter subsystem in the
slvnvdemo_ratelim_harness model from two simulations:

% Open model and subsystem

mdl = 'slvnvdemo_ratelim_harness';

mdl_subsys = ...

 'slvnvdemo_ratelim_harness/Adjustable Rate Limiter';

open_system(mdl);

open_system(mdl_subsys);

% Create data files

t_gain = (0:0.02:2.0)';

u_gain = sin(2*pi*t_gain);

t_pos = [0;2];

u_pos = [1;1];

t_neg = [0;2];

u_neg = [-1;-1];

save('within_lim.mat','t_gain','u_gain','t_pos','u_pos', ...

 't_neg', 'u_neg');

1 Functions — Alphabetical List

1-54

t_gain = [0;2];

u_gain = [0;4];

t_pos = [0;1;1;2];

u_pos = [1;1;5;5]*0.02;

t_neg = [0;2];

u_neg = [0;0];

save('rising_gain.mat','t_gain','u_gain','t_pos','u_pos', ...

 't_neg', 'u_neg');

% Specify coverage options in cvtest object

testObj1 = cvtest(mdl_subsys);

testObj1.label = 'Gain within slew limits';

testObj1.setupCmd = 'load(''within_lim.mat'');';

testObj1.settings.mcdc = 1;

testObj1.settings.condition = 1;

testObj1.settings.decision = 1;

testObj2 = cvtest(mdl_subsys);

testObj2.label = ...

 'Rising gain that temporarily exceeds slew limit';

testObj2.setupCmd = 'load(''rising_gain.mat'');';

testObj2.settings.mcdc = 1;

testObj2.settings.condition = 1;

testObj2.settings.decision = 1;

% Simulate the model with both cvtest objects

[dataObj1,simOut1] = cvsim(testObj1);

[dataObj2,simOut2] = cvsim(testObj2,[0 2]);

cumulative = dataObj1+dataObj2;

cvsave('ratelim_testdata',cumulative);

As in the preceding example, save cumulative coverage results for the Adjustable Rate
Limiter subsystem in the slvnvdemo_ratelim_harness model from two simulations.
Save the results in a cell array and then save the data to a file:

% Open model and subsystem

mdl = 'slvnvdemo_ratelim_harness';

mdl_subsys = ...

 'slvnvdemo_ratelim_harness/Adjustable Rate Limiter';

open_system(mdl);

open_system(mdl_subsys);

 cvsave

1-55

% Create data files

t_gain = (0:0.02:2.0)';

u_gain = sin(2*pi*t_gain);

t_pos = [0;2];

u_pos = [1;1];

t_neg = [0;2];

u_neg = [-1;-1];

save('within_lim.mat','t_gain','u_gain','t_pos','u_pos', ...

 't_neg', 'u_neg');

t_gain = [0;2];

u_gain = [0;4];

t_pos = [0;1;1;2];

u_pos = [1;1;5;5]*0.02;

t_neg = [0;2];

u_neg = [0;0];

save('rising_gain.mat','t_gain','u_gain','t_pos','u_pos', ...

 't_neg', 'u_neg');

% Specify coverage options in cvtest object

testObj1 = cvtest(mdl_subsys);

testObj1.label = 'Gain within slew limits';

testObj1.setupCmd = 'load(''within_lim.mat'');';

testObj1.settings.mcdc = 1;

testObj1.settings.condition = 1;

testObj1.settings.decision = 1;

testObj2 = cvtest(mdl_subsys);

testObj2.label = ...

 'Rising gain that temporarily exceeds slew limit';

testObj2.setupCmd = 'load(''rising_gain.mat'');';

testObj2.settings.mcdc = 1;

testObj2.settings.condition = 1;

testObj2.settings.decision = 1;

% Simulate the model with both cvtest objects

[dataObj1,simOut1] = cvsim(testObj1);

[dataObj2,simOut2] = cvsim(testObj2,[0 2]);

% Save the results in the cell array

cov_results{1} = dataObj1;

cov_results{2} = dataObj2;

% Save the results to a file

1 Functions — Alphabetical List

1-56

cvsave('ratelim_testdata', cov_results{ :});

Alternatives

Use the Coverage Settings dialog box to save cumulative coverage results for a model:

1 Open the model for which you want to save cumulative coverage results.
2 In the Model Editor, select Analysis > Coverage > Settings.
3 On the Coverage tab, select Coverage for this model.
4 On the Results tab:

a Select Save cumulative results in workspace variable.
b Select Save last run in workspace variable.

5 Click OK to close the Coverage Settings dialog box and save your changes.
6 Simulate the model and review the results.

More About
• “Save Test Runs to File with cvsave”

See Also
cvload

 cvsim

1-57

cvsim

Simulate and return model coverage results for test objects

Syntax

cvdo = cvsim(modelName)

cvdo = cvsim(cvto)

[cvdo,simOut] = cvsim(cvto,Name1,Value1,Name2,Value2,...)

[cvdo,simOut] = cvsim(cvto,ParameterStruct)

[cvdo1,cvdo2,...] = cvsim(cvto1,cvto2,...)

Description

cvdo = cvsim(modelName) simulates the model and returns the coverage results
for the model. cvsim saves the coverage results in the cvdata object, cvdo. However,
when recording coverage for multiple models in a hierarchy, cvsim returns the coverage
results in a cv.cvdatagroup object.

cvdo = cvsim(cvto) simulates the model and returns the coverage results for the
cvtest object, cvto. cvsim saves the coverage results in the cvdata object, cvdo.
However, when recording coverage for multiple models in a hierarchy, cvsim returns the
coverage results in a cv.cvdatagroup object.

[cvdo,simOut] = cvsim(cvto,Name1,Value1,Name2,Value2,...) specifies
the model parameters and simulates the model. cvsim returns the coverage
results in the cvdata object, cvdo, and returns the simulation outputs in the
Simulink.SimulationOutput class object, simOut.

[cvdo,simOut] = cvsim(cvto,ParameterStruct) sets the model parameters
specified in a structure ParameterStruct, simulates the model, returns the coverage
results in cvdo, and returns the simulation outputs in simOut.

[cvdo1,cvdo2,...] = cvsim(cvto1,cvto2,...) simulates the model and returns
the coverage results for the test objects, cvto1, cvto2, cvdo1 contains the
coverage results for cvto1, cvdo2 contains the coverage results for cvto2, and so on.

1 Functions — Alphabetical List

1-58

Note: Even if you have not enabled coverage recording for the model, you can execute the
cvsim command to record coverage for your model.

Input Arguments
modelName

Name of model specified as a string

cvto

cvtest object that specifies coverage options for the simulation

ParameterStruct

Model parameters specified as a structure

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'ParameterName'

Name of the model parameter to be specified for simulation

'ParameterValue'

Value of the model parameter

Note: For a complete list of model parameters, see “Model Parameters” in the Simulink
documentation.

Output Arguments
cvdo

cvdata object

 cvsim

1-59

simOut

A Simulink.SimulationOutput class object that contains the simulation outputs.

Examples

Open the sldemo_engine example model, create the test object, set the model
parameters, and simulate the model. cvsim returns the coverage data in cvdo and the
simulation outputs in the Simulink.SimulationOutput object, simOut:
model = 'sldemo_engine';

open_system(model);

testObj = cvtest(model); % Get test data

testObj.settings.decision = 1;

paramStruct.AbsTol = '1e-5';

paramStruct.SaveState = 'on';

paramStruct.StateSaveName = 'xoutNew';

paramStruct.SaveOutput = 'on';

paramStruct.OutputSaveName = 'youtNew';

[cvdo,simOut] = cvsim(testObj,paramStruct); % Get coverage

cvhtml('CoverageReport.html', cvdo); % Create HTML Report

See Also
cv.cvdatagroup | cvtest | sim

1 Functions — Alphabetical List

1-60

cvtest
Create model coverage test specification object

Syntax

cvto = cvtest(root)

cvto = cvtest(root, label)

cvto = cvtest(root, label, setupcmd)

Description

cvto = cvtest(root) creates a test specification object with the handle cvto.
Simulate cvto with the cvsim command.

cvto = cvtest(root, label) creates a test object with the label label, which is
used for reporting results.

cvto = cvtest(root, label, setupcmd) creates a test object with the setup
command setupcmd.

Input Arguments

root

Name or handle for a Simulink model or a subsystem. Only the specified model or
subsystem and its descendants are subject to model coverage testing.

label

Label for test object

setupcmd

Setup command for creating test object. The setup command is executed in the base
MATLAB workspace just prior to running the simulation. This command is useful for
loading data prior to a test.

 cvtest

1-61

Output Arguments

cvto

A test specification object with the following structure.

Field Description

id Read-only internal ID
modelcov Read-only internal ID
rootPath Name of system or subsystem for analysis
label String used when reporting results
setupCmd Command executed in base workspace prior to

simulation
settings.condition Set to 1 for condition coverage.
settings.decision Set to 1 for decision coverage.
settings.

designverifier

Set to 1 for coverage for Simulink Design Verifier™
blocks.

settings.mcdc Set to 1 for MCDC coverage.
settings.relationalop Set to 1 for relational boundary coverage. Use

options.

covBoundaryAbsTol and options.
covBoundaryRelTol for specifying tolerances for
this coverage.

For more information, see “Relational Boundary
Coverage”.

settings.sigrange Set to 1 for signal range coverage.
settings.sigsize Set to 1 for signal size coverage.
settings.tableExec Set to 1 for lookup table coverage.
modelRefSettings.

enable

• 'off' — Disables coverage for all referenced
models.

• 'all' or on — Enables coverage for all
referenced models.

1 Functions — Alphabetical List

1-62

Field Description
• 'filtered' — Enables coverage only

for referenced models not listed in the
excludedModels subfield.

modelRefSettings.

excludeTopModel

Set to 1 to exclude coverage for the top model

modelRefSettings.

excludedModels

String specifying a comma-separated list of
referenced models for which coverage is disabled.

emlSettings.

enableExternal

Set to 1 to enable coverage for external program files
called by MATLAB functions in your model.

sfcnSettings.

enableSfcn

Set to 1 to enable coverage for C/C++ S-Function
blocks in your model.

options.

forceBlockReduction

Set to 1 to override the Simulink Block reduction
parameter if it is enabled.

options.

covBoundaryRelTol

Set to the value of relative tolerance for relational
boundary coverage.

For more information, see “Relational Boundary
Coverage”.

options.

covBoundaryAbsTol

Set to the value of absolute tolerance for relational
boundary coverage.

For more information, see “Relational Boundary
Coverage”.

options.useTimeInterval Set to 1 to restrict model coverage recording only
inside a specified simulation time interval.

For more information see “Specify Model Coverage
Options”.

options.intervalStartTime Value of the coverage recording interval start time.
options.intervalStopTime Value of the coverage recording interval stop time.
filter.fileName String specifying name of coverage filter file, if you

have excluded objects from coverage recording. See
“Coverage Filter Rules and Files”.

 cvtest

1-63

Examples

Create a cvtest object for the Adjustable Rate Limiter block in the
slvnvdemo_ratelim_harness model. Simulate and get coverage data using cvsim.

open_system('slvnvdemo_ratelim_harness');

testObj = cvtest(['slvnvdemo_ratelim_harness', ...

 '/Adjustable Rate Limiter']);

testObj.label = 'Gain within slew limits';

testObj.setupCmd = ...

 'load(''slvnvdemo_ratelim_harness_data.mat'');';

testObj.settings.decision = 1;

testObj.settings.overflowsaturation = 1;

cvdo = cvsim(testObj);

More About
• “Create Tests with cvtest”

See Also
cvsim | cv.cvdatagroup

1 Functions — Alphabetical List

1-64

decisioninfo

Retrieve decision coverage information from cvdata object

Syntax

coverage = decisioninfo(cvdo, object)

coverage = decisioninfo(cvdo, object, ignore_descendants)

[coverage, description] = decisioninfo(cvdo, object)

Description

coverage = decisioninfo(cvdo, object) returns decision coverage results from
the cvdata object cvdo for the model component specified by object.

coverage = decisioninfo(cvdo, object, ignore_descendants) returns
decision coverage results for object, depending on the value of ignore_descendants.

[coverage, description] = decisioninfo(cvdo, object) returns decision
coverage results and text descriptions of decision points associated with object.

Input Arguments

cvdo

cvdata object

object

The object argument specifies an object in the model or Stateflow chart that received
decision coverage. Valid values for object include the following:

Object Specification Description

BlockPath Full path to a model or block

 decisioninfo

1-65

Object Specification Description

BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object from a singly

instantiated Stateflow chart
{BlockPath, sfID} Cell array with the path to a Stateflow chart or

atomic subchart and the ID of an object contained
in that chart or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart
or subchart and a Stateflow object API handle
contained in that chart or subchart

[BlockHandle, sfID] Array with a handle to a Stateflow chart or
atomic subchart and the ID of an object contained
in that chart or subchart

ignore_descendants

Specifies to ignore the coverage of descendant objects if ignore_descendants is set to
1.

Output Arguments

coverage

The value of coverage is a two-element vector of the form [covered_outcomes
total_outcomes].coverage is empty if cvdo does not contain decision coverage
results for object. The two elements are:

covered_outcomes Number of decision outcomes satisfied for
object

total_outcomes Number of decision outcomes for object

description

description is a structure array containing the following fields:

1 Functions — Alphabetical List

1-66

decision.text String describing a decision point, e.g., 'U
> LL'

decision.outcome.text String describing a decision outcome, i.e.,
'true' or 'false'

decision.outcome.

executionCount

Number of times a decision outcome
occurred in a simulation

Examples

Open the slvnvdemo_cv_small_controller model and create the test specification
object testObj. Enable decision coverage for slvnvdemo_cv_small_controller and
execute testObj using cvsim. Use decisioninfo to retrieve the decision coverage
results for the Saturation block and determine the percentage of decision outcomes
covered:

mdl = 'slvnvdemo_cv_small_controller';

open_system(mdl)

testObj = cvtest(mdl)

testObj.settings.decision = 1;

data = cvsim(testObj)

blk_handle = get_param([mdl, '/Saturation'], 'Handle');

cov = decisioninfo(data, blk_handle)

percent_cov = 100 * cov(1) / cov(2)

Alternatives

Use the Coverage Settings dialog box to collect and display decision coverage results:

1 Open the model.
2 In the Model Editor, select Analysis > Coverage > Settings.
3 On the Coverage tab, select Coverage for this model.
4 Under Coverage metrics, select Decision.
5 On the Results and Reporting tabs, specify the output you need.
6 Click OK to close the Coverage Settings dialog box and save your changes.
7 Simulate the model and review the results.

 decisioninfo

1-67

More About
• “Decision Coverage (DC)”

See Also
complexityinfo | cvsim | conditioninfo | getCoverageInfo | mcdcinfo |
overflowsaturationinfo | sigrangeinfo | sigsizeinfo | tableinfo

1 Functions — Alphabetical List

1-68

delete
Class: Advisor.Application
Package: Advisor

Delete Advisor.Application object

Syntax

delete(app)

Description

delete(app) deletes the Application object when you close the root model specified
using Advisor.Application.setAnalysisRoot, Application objects are implicitly
closed.

Examples

app = Advisor.Manager.createApplication();

delete(app)

Input Arguments

app — Advisor.Application object to destroy
handle

Advisor.Application object to destroy, as specified by
Advisor.Manager.createApplication.

See Also
Advisor.Manager.createApplication | Advisor.Application.setAnalysisRoot

Introduced in R2015b

 deselectCheckInstances

1-69

deselectCheckInstances
Class: Advisor.Application
Package: Advisor

Clear check instances from Model Advisor analysis

Syntax

deselectCheckInstances(app)

deselectCheckInstances(app,Name,Value)

Description

You can clear check instances from Model Advisor analysis. A check instance is an
instantiation of a ModelAdvisor.Check object in the Model Advisor configuration.
When you change the Model Advisor configuration, the check instance ID might change.
To obtain the check instance ID, use the getCheckInstanceIDs method.

deselectCheckInstances(app) clears all check instances from Model Advisor
analysis.

deselectCheckInstances(app,Name,Value) clears check instances specified by
Name,Value pair arguments from Model Advisor analysis.

Input Arguments

app — Application
Advisor.Application object

Advisor.Application object, created by Advisor.Manager.createApplication

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Functions — Alphabetical List

1-70

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'IDs' — Checks instance IDs
cell array

Check instances to clear from Model Advisor analysis, as specified by a cell array of IDs
Data Types: cell

Examples

Clear All Check Instances from Model Advisor Analysis

This example shows how to set the root model, create an Application object, set root
analysis, and clear checks instances from Model Advisor analysis.

% Set root model to sldemo_mdlref_basic model

RootModel='sldemo_mdlref_basic';

% Create an Application object

app = Advisor.Manager.createApplication();

% Set the Application object root analysis

setAnalysisRoot(app,'Root',RootModel);

% Deselect all checks

deselectCheckInstances(app);

Clear Check Instance from Model Advisor Analysis Using Instance ID

This example shows how to set the root model, create an Application object, set root
analysis, and deselect checks instances using instance IDs.

% Set root model to sldemo_mdlref_basic model

RootModel='sldemo_mdlref_basic';

% Create an Application object

app = Advisor.Manager.createApplication();

% Set the Application object root analysis

setAnalysisRoot(app,'Root',RootModel);

 deselectCheckInstances

1-71

% Deselect "Identify unconnected lines, input ports, and output

% ports" check using instance ID

instanceID = getCheckInstanceIDs(app,'mathworks.design.UnconnectedLinesPorts');

checkinstanceID = instanceID(1);

deselectCheckInstances(app,'IDs',checkinstanceID);

See Also
Advisor.Manager.createApplication | Advisor.Application.setAnalysisRoot |
Advisor.Application.getCheckInstanceIDs | Advisor.Application.selectCheckInstances

Introduced in R2015b

1 Functions — Alphabetical List

1-72

deselectComponents
Class: Advisor.Application
Package: Advisor

Clear model components from Model Advisor analysis

Syntax

deselectComponents(app)

deselectComponents(app,Name,Value)

Description

You can clear model components from Model Advisor analysis. A model component
is a model in the system hierarchy. Models that the root model references and that
Advisor.Application.setAnalysisRoot specifies are model components.

deselectComponents(app) clears all components from Model Advisor analysis.

deselectComponents(app,Name,Value) clears model components specified by
Name,Value pair arguments from Model Advisor analysis.

Input Arguments

app — Application
Advisor.Application object

Advisor.Application object, created by Advisor.Manager.createApplication

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 deselectComponents

1-73

'IDs' — Component IDs
cell array

Components to clear from Model Advisor analysis, as specified by a cell array of IDs
Data Types: cell

'HierarchicalSelection' — Clear component and component children
false (default) | true

Clear components specified by IDs and component children from Model Advisor analysis
Data Types: logical

Examples

Clear All Components from Model Advisor Analysis

This example shows how to set the root model, create an Application object, set root
analysis, and clear all components from Model Advisor analysis.

% Set root model to sldemo_mdlref_basic model

RootModel='sldemo_mdlref_basic';

% Create an Application object

app = Advisor.Manager.createApplication();

% Set the Application object root analysis

setAnalysisRoot(app,'Root',RootModel);

% Deselect all components

deselectComponents(app);

Clear Components from Model Advisor Analysis Using IDs

This example shows how to set the root model, create an Application object, set root
analysis, and clear model components using IDs.

% Set root model to sldemo_mdlref_basic model

RootModel='sldemo_mdlref_basic';

% Create an Application object

app = Advisor.Manager.createApplication();

1 Functions — Alphabetical List

1-74

% Set the Application object root analysis

setAnalysisRoot(app,'Root',RootModel);

% Deselect component using IDs

deselectComponents(app,'IDs',RootModel);

See Also
Advisor.Manager.createApplication | Advisor.Application.setAnalysisRoot |
Advisor.Application.selectComponents

Introduced in R2015b

 generateReport

1-75

generateReport
Class: Advisor.Application
Package: Advisor

Generate report for Model Advisor analysis

Syntax

generateReport(app)

generateReport(app,Name,Value)

Description

Generate a Model Advisor report for an Application object analysis.

generateReport(app) generates a Model Advisor report for each component specified
by the Application object. By default, a report with the name of the analysis root is
generated in the current folder.

generateReport(app,Name,Value) generates a Model Advisor report for each
component specified by the Application object. Use the Name,Value pairs to specify
the location and name of the report.

Input Arguments

app — Application
Advisor.Application object

Advisor.Application object, created by Advisor.Manager.createApplication

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Functions — Alphabetical List

1-76

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Location' — Path to report location
string

'Name' — Report name
string

Examples

Generate Report

This example shows how to generate a report with the analysis root name in the current
folder.

% Set root model to sldemo_mdlref_basic model

RootModel='sldemo_mdlref_basic';

% Create an Application object

app = Advisor.Manager.createApplication();

% Set the Application object root analysis

setAnalysisRoot(app,'Root',RootModel);

% Run Model Advisor analysis

run(app);

% Generate report

report = generateReport(app);

% Open the report in web browser

web(report);

Generate Report with Specified Name and Location

This example shows how to generate a report with a specified name and location.

% Set root model to sldemo_mdlref_basic model

RootModel='sldemo_mdlref_basic';

% Create an Application object

 generateReport

1-77

app = Advisor.Manager.createApplication();

% Set the Application object root analysis

setAnalysisRoot(app,'Root',RootModel);

% Run Model Advisor analysis

run(app);

% Generate report in my_work directory

mkdir my_work

report = generateReport(app,'Location','my_work','Name','RootModelReport');

%Open the report in web browser

web(report);

See Also
Advisor.Manager.createApplication | Advisor.Application.setAnalysisRoot |
Advisor.Application.run

Introduced in R2015b

1 Functions — Alphabetical List

1-78

get
Class: cv.cvdatagroup
Package: cv

Get cvdata object

Syntax

get(cvdg, model_name)

Description

get(cvdg, model_name) returns the cvdata object in the cv.cvdatagroup object
cvdg that corresponds to the model specified in model_name.

Examples

Get a cvdata object from the specified Simulink model:

get(cvdg, 'slvnvdemo_cv_small_controller');

 getAll

1-79

getAll
Class: cv.cvdatagroup
Package: cv

Get all cvdata objects

Syntax

getAll(cvdo)

Description

getAll(cvdo) returns all cvdata objects in the cv.cvdatagroup object cvdo.

Examples

Return all cvdata objects from the specified Simulink model:

getAll(cvdg, 'slvnvdemo_cv_small_controller');

1 Functions — Alphabetical List

1-80

getApplication
Class: Advisor.Manager
Package: Advisor

Return handle to Advisor.Application object

Syntax

app = getApplication(Name,Value)

Description

app = getApplication(Name,Value) returns the handle to an
Advisor.Application object by using the object properties.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Id',appID returns handle to an Advisor.Application using the object
ID.

'Id' — Advisor.Application object ID
Advisor.Application object

Data Types: function_handle

'Root' — Root model name
string
Data Types: char

 getApplication

1-81

'RootType' — Type of root analysis
'Model' (default) | 'Subsystem'

Data Types: char

Output Arguments

app — Handle to Advisor.Application object
Advisor.Application object

Data Types: function_handle

See Also
Advisor.Application | Advisor.Manager.createApplication

Introduced in R2015b

1 Functions — Alphabetical List

1-82

getCheckInstanceIDs
Class: Advisor.Application
Package: Advisor

Obtain check instance IDs

Syntax

CheckInstanceIDs = getCheckInstanceIDs(app)

CheckInstanceIDs = getCheckInstanceIDs(app,CheckID)

Description

Obtain the check instance ID for a check using the check ID. A check instance is an
instantiation of a ModelAdvisor.Check object in the Model Advisor configuration.
When you change the Model Advisor configuration, the check instance ID might change.
The check ID is a static string identifier that does not change.

CheckInstanceIDs = getCheckInstanceIDs(app) returns a cell array of IDs.

CheckInstanceIDs = getCheckInstanceIDs(app,CheckID) returns a instance ID
for a check.

Input Arguments

app — Application
Advisor.Application object

Advisor.Application object, created by Advisor.Manager.createApplication

CheckID — Check ID associated with Model Advisor check
string

Check ID associated with Model Advisor check.
Example: 'mathworks.design.UnconnectedLinesPorts'

 getCheckInstanceIDs

1-83

Output Arguments

CheckInstanceIDs — Cell array of check instance IDs
cell array

Check instance IDs, returned as a cell array of IDs

Examples

Obtain Check Instance IDs

This example shows how to set the root model, create an Application object, set root
analysis, and obtain the check instance ID.

% Set root model to sldemo_mdlref_basic model

RootModel='sldemo_mdlref_basic';

% Create an Application object

app = Advisor.Manager.createApplication();

% Set the Application object root analysis

setAnalysisRoot(app,'Root',RootModel);

% Select all check instances

selectCheckInstances(app);

% Obtain check instance IDs

CheckInstanceIDs = getCheckInstanceIDs(app);

Obtain Check Instance ID for a Check

This example shows how to set the root model, create an Application object, set root
analysis, and obtain the check instance ID for check Identify unconnected lines,
input ports.

% Set root model to sldemo_mdlref_basic model

RootModel='sldemo_mdlref_basic';

% Create an Application object

app = Advisor.Manager.createApplication();

% Set the Application object root analysis

1 Functions — Alphabetical List

1-84

setAnalysisRoot(app,'Root',RootModel);

% Select all check instances

selectCheckInstances(app);

% Obtain check instance ID for Model Advisor check "Identify unconnected lines,

% input ports"

CheckInstanceIDs = getCheckInstanceIDs(app,'mathworks.design.UnconnectedLinesPorts');

Alternatives

In the left-hand pane of the Model Advisor window, right-click the check and select Send
Check Instance ID to Workspace.

See Also
Advisor.Manager.createApplication | Advisor.Application.setAnalysisRoot |
Advisor.Application.selectCheckInstances

Introduced in R2015b

 getCoverageInfo

1-85

getCoverageInfo
Retrieve coverage information for Simulink Design Verifier blocks from cvdata object

Syntax
[coverage, description] = getCoverageInfo(cvdo, object)

[coverage, description] = getCoverageInfo(cvdo, object, metric)

[coverage, description] = getCoverageInfo(cvdo, object, metric,

ignore_descendants)

Description
[coverage, description] = getCoverageInfo(cvdo, object) collects Simulink
Design Verifier coverage for object, based on coverage results in cvdo. object is a
handle to a block, subsystem, or Stateflow chart. getCoverageData returns coverage
data only for Simulink Design Verifier library blocks in object's hierarchy.

[coverage, description] = getCoverageInfo(cvdo, object, metric)

returns coverage data for the block type specified in metric. If object does not match
the block type, getCoverageInfo does not return data.

[coverage, description] = getCoverageInfo(cvdo, object, metric,

ignore_descendants) returns coverage data about object, omitting coverage data for
its descendant objects if ignore_descendants equals 1.

Input Arguments

cvdo

cvdata object

object

In the model or Stateflow chart, object that received Simulink Design Verifier coverage.
The following are valid values for object.

BlockPath Full path to a model or block

1 Functions — Alphabetical List

1-86

BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID from a singly instantiated Stateflow

chart
sfObj Handle to a Stateflow API object from a singly

instantiated Stateflow chart
{BlockPath, sfID} Cell array with the path to a Stateflow chart or

atomic subchart and the ID of an object contained
in that chart or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart
or atomic subchart and a Stateflow object API
handle contained in that chart or subchart

[BlockHandle, sfID] Array with a handle to a Stateflow chart or
atomic subchart and the ID of an object contained
in that chart or subchart

Default:

metric

cvmetric.Sldv enumeration object with values that correspond to Simulink Design
Verifier library blocks.

test Test Objective block
proof Proof Objective block
condition Test Condition block
assumption Proof Assumption block

ignore_descendants

Boolean value that specifies to ignore the coverage of descendant objects if set to 1.

Output Arguments

coverage

Two-element vector of the form [covered_outcomes total_outcomes].

 getCoverageInfo

1-87

covered_outcomes Number of test objectives satisfied for
object

total_outcomes Total number of test objectives for object

coverage is empty if cvdo does not contain decision coverage results for object.

description

Structure array containing descriptions of each test objective, and descriptions and
execution counts for each outcome within object.

Examples
Collect and display coverage data for the Test Objective block named True in the
sldvdemo_debounce_testobjblks model:
mdl = 'sldvdemo_debounce_testobjblks';

open_system(mdl)

testObj = cvtest(mdl)

testObj.settings.designverifier = 1;

data = cvsim(testObj)

blk_handle = get_param([mdl, '/True'], 'Handle');

getCoverageInfo(data, blk_handle)

Alternatives
Use the Coverage Settings dialog box to collect and display coverage results for Simulink
Design Verifier library blocks:

1 Open the model.
2 In the Model Editor, select Analysis > Coverage > Settings.
3 On the Coverage tab, select Coverage for this model.
4 Under Coverage metrics, select Simulink Design Verifier.
5 Click OK to close the Coverage Settings dialog box and save your changes.
6 Simulate the model and review the results.

More About
• “Simulink Design Verifier Coverage”

1 Functions — Alphabetical List

1-88

See Also
complexityinfo | cvsim | conditioninfo | decisioninfo | mcdcinfo |
overflowsaturationinfo | sigrangeinfo | sigsizeinfo | tableinfo

 getEntry

1-89

getEntry
Class: ModelAdvisor.Table
Package: ModelAdvisor

Get table cell contents

Syntax

content = getEntry(table, row, column)

Description

content = getEntry(table, row, column) gets the contents of the specified cell.

Input Arguments

table Instantiation of the ModelAdvisor.Table class
row An integer specifying the row
column An integer specifying the column

Output Arguments

content An element object or object array specifying the content of the
table entry

Examples

Get the content of the table cell in the third column, third row:

table1 = ModelAdvisor.Table(4, 4);

1 Functions — Alphabetical List

1-90

.

.

.

content = getEntry(table1, 3, 3);

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

 getID

1-91

getID
Class: ModelAdvisor.Check
Package: ModelAdvisor

Return check identifier

Syntax

id = getID(check_obj)

Description

id = getID(check_obj) returns the ID of the check check_obj. id is a unique string
that identifies the check.

You create this unique identifier when you create the check. This unique identifier is the
equivalent of the ModelAdvisor.Check ID property.

See Also
“Model Advisor Customization”

How To
• “Define Custom Checks”
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-92

execute

Class: slmetric.Engine
Package: slmetric

Generate metric data

Syntax

execute(slmetric_obj)

execute(slmetric_obj,MetricIDs)

Description

Generate model metric data for the specified metric engine object.

To generate metric data for all available metrics, use execute(slmetric_obj) .

To generate metric data for specific metrics, use execute(slmetric_obj,MetricIDs)
.

Input Arguments

slmetric_obj — Metric engine object
slmetric.Engine object

Constructed slmetric.Engine object.

MetricIDs — Metric identifier
string | cell array of strings

Metric identifier, specified as a string or a cell array of strings.
Example: 'mathworks.metrics.DescriptiveBlockNames'

 execute

1-93

Examples

Generate Metrics

This example shows how to create a slmetric.Engine object, set the analysis root,
generate metrics, and collect metrics for model vdp.

% Create an slmetric.Engine object

slmetric_obj = slmetric.Engine();

% Specify model for metric analysis

setAnalysisRoot(slmetric_obj,'Root','vdp','RootType','Model');

% Generate and collect model metrics

execute(slmetric_obj);

rc = getMetrics(slmetric_obj);

See Also
slmetric.metric.ResultCollection | slmetric.metric.getAvailableMetrics

More About
• “Model Metrics Results API” on page 4-2
• “Collect Model Metrics Programmatically”
• “Model Metrics”

Introduced in R2016a

1 Functions — Alphabetical List

1-94

getMetrics
Class: slmetric.Engine
Package: slmetric

Collect model metric data

Syntax
Results = getMetrics(slmetric_obj)

Results = getMetrics(slmetric_obj,MetricIDs)

Description
Collect model metric data for the specified analysis root.

Results = getMetrics(slmetric_obj)

Results = getMetrics(slmetric_obj,MetricIDs)

Input Arguments
slmetric_obj — Metric engine object
slmetric.Engine object

Constructed slmetric.Engine object.

MetricIDs — Metric identifier
string | cell array of strings

Metric identifier, specified as a string or a cell array of strings.
Example: 'mathworks.metrics.DescriptiveBlockNames'

Output Arguments
Result — Metric data
array of slmetric.metric.ResultCollection objects

 getMetrics

1-95

Metric data, returned as an array of slmetric.metric.ResultCollection objects.

Examples

Collect Metrics

This example shows how to create a slmetric.Engine object, set the analysis root, and
collect metrics for model vdp.

% Create an slmetric.Engine object

slmetric_obj = slmetric.Engine();

% Specify model for metric analysis

setAnalysisRoot(slmetric_obj,'Root','vdp','RootType','Model');

% Generate and collect model metrics

execute(slmetric_obj);

rc = getMetrics(slmetric_obj);

See Also
slmetric.metric.ResultCollection | slmetric.metric.getAvailableMetrics

More About
• “Model Metrics Results API” on page 4-2
• “Collect Model Metrics Programmatically”
• “Model Metrics”

Introduced in R2016a

1 Functions — Alphabetical List

1-96

getResults
Class: Advisor.Application
Package: Advisor

Access Model Advisor analysis results

Syntax

Results = getResults(app)

Results = getResults(app,Name,Value)

Description

Access Application object analysis results.

Results = getResults(app)

Results = getResults(app,Name,Value)

Input Arguments

app — Application
Advisor.Application object

Advisor.Application object, created by Advisor.Manager.createApplication

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'IDs' — Component IDs
cell array

 getResults

1-97

Component IDs, as specified as a cell array of IDs
Data Types: cell

Output Arguments

Result — Analysis results
cell array of ModelAdvisor.SystemResult objects

Analysis results, returned as a cell array of ModelAdvisor.SystemResult objects.

See Also
Advisor.Manager.createApplication | Advisor.Application.setAnalysisRoot
| Advisor.Application.run | Advisor.Application.selectCheckInstances |
Advisor.Application.deselectCheckInstances | ModelAdvisor.run

Introduced in R2015b

1 Functions — Alphabetical List

1-98

loadConfiguration
Class: Advisor.Application
Package: Advisor

Load Model Advisor configuration

Syntax

loadConfiguration(app,filename)

Description

loadConfiguration(app,filename) loads a Model Advisor configuration MAT-file.

Input Arguments

app — Application
Advisor.Application object

Advisor.Application object, created by Advisor.Manager.createApplication

filename — Name of Model Advisor configuration MAT-file
string

Name of Model Advisor configuration MAT-file, specified as a string.
Example: 'MyConfiguration.mat'

Data Types: char

See Also
Advisor.Manager.createApplication | Advisor.Application.setAnalysisRoot

Introduced in R2015b

 mcdcinfo

1-99

mcdcinfo
Retrieve modified condition/decision coverage information from cvdata object

Syntax

coverage = mcdcinfo(cvdo, object)

coverage = mcdcinfo(cvdo, object, ignore_descendants)

[coverage, description] = mcdcinfo(cvdo, object)

Description

coverage = mcdcinfo(cvdo, object) returns modified condition/decision coverage
(MCDC) results from the cvdata object cvdo for the model component specified by
object.

coverage = mcdcinfo(cvdo, object, ignore_descendants) returns MCDC
results for object, depending on the value of ignore_descendants.

[coverage, description] = mcdcinfo(cvdo, object) returns MCDC results
and text descriptions of each condition/decision in object.

Input Arguments

cvdo

cvdata object

ignore_descendants

Logical value specifying whether to ignore the coverage of descendant objects
1 — Ignore coverage of descendant objects
0 — Collect coverage for descendant objects

object

The object argument specifies an object in the Simulink model or Stateflow diagram
that receives decision coverage. Valid values for object include the following:

1 Functions — Alphabetical List

1-100

Object Specification Description

BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a Stateflow chart

or atomic subchart and the ID of an object
contained in that chart or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart
or atomic subchart and a Stateflow object API
handle contained in that chart or subchart

[BlockHandle, sfID] Array with a handle to a Stateflow chart
or atomic subchart and the ID of an object
contained in that chart or subchart

Output Arguments

coverage

Two-element vector of the form [covered_outcomes total_outcomes]. coverage is
empty if cvdo does not contain modified condition/decision coverage results for object.
The two elements are:

covered_outcomes Number of condition/decision outcomes
satisfied for object

total_outcomes Total number of condition/decision
outcomes for object

description

A structure array containing the following fields:

text String denoting whether the condition/
decision is associated with a block output or
Stateflow transition

 mcdcinfo

1-101

condition.text String describing a condition/decision or
the block port to which it applies

condition.achieved Logical array indicating whether a
condition case has been fully covered

condition.trueRslt String representing a condition case
expression that produces a true result

condition.falseRslt String representing a condition case
expression that produces a false result

Examples

Collect MCDC coverage for the slvnvdemo_cv_small_controller model and
determine the percentage of MCDC coverage collected for the Logic block in the Gain
subsystem:

mdl = 'slvnvdemo_cv_small_controller';

open_system(mdl)

%Create test specification object

testObj = cvtest(mdl)

%Enable MCDC coverage

testObj.settings.mcdc = 1;

%Simulate model

data = cvsim(testObj)

%Retrieve MCDC results for Logic block

blk_handle = get_param([mdl, '/Gain/Logic'], 'Handle');

cov = mcdcinfo(data, blk_handle)

%Percentage of MCDC outcomes covered

percent_cov = 100 * cov(1) / cov(2)

Alternatives

Use the Coverage Settings dialog box to collect MCDC coverage for a model:

1 Open the model.
2 In the Model Editor, select Analysis > Coverage > Settings.
3 On the Coverage tab, select Coverage for this model.
4 Under Coverage metrics, select MCDC.

1 Functions — Alphabetical List

1-102

5 On the Results and Reporting tabs, specify the output you need.
6 Click OK to close the Coverage Settings dialog box and save your changes.
7 Simulate the model and review the MCDC coverage results.

More About
• “Modified Condition/Decision Coverage (MCDC)”
• “MCDC Analysis”

See Also
complexityinfo | cvsim | conditioninfo | decisioninfo | getCoverageInfo |
overflowsaturationinfo | sigrangeinfo | sigsizeinfo | tableinfo

 slmetric.metric.Metric class

1-103

slmetric.metric.Metric class
Package: slmetric.metric

Abstract class for creating model metrics

Description

Abstract base class for creating model metrics. To create a new model metric, create a
MATLAB class that derives from the slmetric.metric.Metric class.

Properties

CompileContext — Compile mode
string

Compile mode for metric calculation. If your model metric requires model compilation,
specify 'PostCompile'. If your model metric does not require model compilation,
specify 'None'.

Example: 'PostCompile'

Data Types: char

ComponentScope — Component scope
array of Advisor.component.Types enum values

Model components for which metric is calculated. The metric is calculated for all
components that match the type.

Description — Metric description
string

Metric description.
Data Types: char

ID — Metric ID
string

1 Functions — Alphabetical List

1-104

Unique metric identifier.
Data Types: char

Version — Metric version number
integer

Metric version.
Data Types: uint32

Methods

algorithm Specify logic for metric algorithm analysis

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

See Also
slmetric.Engine | slmetric.metric.createNewMetricClass |
slmetric.metric.getAvailableMetrics

More About
• “Create Model Metrics by Using APIs”
• “Model Metrics Results API” on page 4-2
• “Model Metrics”
• Class Attributes
• Property Attributes

Introduced in R2016a

 algorithm

1-105

algorithm
Class: slmetric.metric.Metric
Package: slmetric.metric

Specify logic for metric algorithm analysis

Syntax

Result = algorithm(Metric,Component)

Description

Specify logic for metric algorithm analysis.

Result = algorithm(Metric,Component)

Input Arguments

Metric — Metric object
Metric object

Instance of Metric object, derived from slmetric.metric.Metric class, to use for
metric analysis.

Component — Component object
Advisor.component.Component object

Instance of Advisor.component.Component object. to use for metric analysis.

Output Arguments

Result — Algorithm calculation
array of slmetric.metric.Result objects

Algorithm data, returned as an array of slmetric.metric.Result objects.

1 Functions — Alphabetical List

1-106

Examples

Create Metric Algorithm for Nonvirtual Block Count

This example shows how to use the algorithm method to create a nonvirtual block
count metric.

1 Using the createNewMetricClass function, create a new metric algorithm
class with name nonvirtualblockcount. The function creates the
nonvirtualblockcount.m file in the current working folder.

className = 'nonvirtualblockcount';

slmetric.metric.createNewMetricClass(className);

2 Open and edit the metric algorithm file nonvirtualblockcount.m. The file
contains an empty metric algorithm method.

edit(className);

3 Copy and paste the following code into the nonvirtualblockcount.m file. Save
nonvirtualblockcount.m. The code provides a metric algorithm for counting the
nonvirtual blocks.

 %nonvirtualblockcount calculate number of non-virtual blocks per level.

 % BusCreator, BusSelector and BusAssign are treated as non-virtual.

 properties

 VirtualBlockTypes = {'Demux','From','Goto','Ground', ...

 'GotoTagVisiblity','Mux','SignalSpecification', ...

 'Terminator','Inport'};

 end

 methods

 function this = nonvirtualblockcount()

 this.ID = 'nonvirtualblockcount';

 this.Version = 1;

 this.CompileContext = 'None';

 this.Description = 'Algorithm that counts nonvirtual blocks per level.';

 this.ComponentScope = [Advisor.component.Types.Model, ...

 Advisor.component.Types.SubSystem];

 end

 function res = algorithm(this, component)

 % create a result object for this component

 res = slmetric.metric.Result();

 algorithm

1-107

 % set the component and metric ID

 res.ComponentID = component.ID;

 res.MetricID = this.ID;

 % use find_system to get all blocks inside this component

 blocks = find_system(getPath(component), ...

 'SearchDepth', 1, ...

 'Type', 'Block');

 isNonVirtual = true(size(blocks));

 for n=1:length(blocks)

 blockType = get_param(blocks{n}, 'BlockType');

 if any(strcmp(this.VirtualBlockTypes, blockType))

 isNonVirtual(n) = false;

 else

 switch blockType

 case 'SubSystem'

 % Virtual unless the block is conditionally executed

 % or the Treat as atomic unit check box is selected.

 if strcmp(get_param(blocks{n}, 'IsSubSystemVirtual'), ...

 'on')

 isNonVirtual(n) = false;

 end

 case 'Outport'

 % Outport: Virtual when the block resides within

 % any SubSystem block (conditional or not), and

 % does not reside in the root (top-level) Simulink window.

 if component.Type ~= Advisor.component.Types.Model

 isNonVirtual(n) = false;

 end

 case 'Selector'

 % Virtual only when Number of input dimensions

 % specifies 1 and Index Option specifies Select

 % all, Index vector (dialog), or Starting index (dialog).

 nod = get_param(blocks{n}, 'NumberOfDimensions');

 ios = get_param(blocks{n}, 'IndexOptionArray');

 ios_settings = {'Assign all', 'Index vector (dialog)', ...

 'Starting index (dialog)'};

 if nod == 1 && any(strcmp(ios_settings, ios))

1 Functions — Alphabetical List

1-108

 isNonVirtual(n) = false;

 end

 case 'Trigger'

 % Virtual when the output port is not present.

 if strcmp(get_param(blocks{n}, 'ShowOutputPort'), 'off')

 isNonVirtual(n) = false;

 end

 case 'Enable'

 % Virtual unless connected directly to an Outport block.

 isNonVirtual(n) = false;

 if strcmp(get_param(blocks{n}, 'ShowOutputPort'), 'on')

 pc = get_param(blocks{n}, 'PortConnectivity');

 if ~isempty(pc.DstBlock) && ...

 strcmp(get_param(pc.DstBlock, 'BlockType'), ...

 'Outport')

 isNonVirtual(n) = true;

 end

 end

 end

 end

 end

 blocks = blocks(isNonVirtual);

 res.Value = length(blocks);

 end

 end

end

See Also
slmetric.metric.Result | slmetric.metric.createNewMetricClass

More About
• “Create Model Metrics by Using APIs”
• “Model Metrics”

Introduced in R2016a

 Advisor.component.Component class

1-109

Advisor.component.Component class
Package: Advisor.component

Create component for metric analysis

Description
Use instances of Advisor.components.Component to create a component for metric
analysis.

Construction
component_obj = Advisor.components.Component creates a model component
object.

Properties

ID — Component ID
string

Component identifier. This property is read/write.

Type — Component type
enum

Component type, as specified by Advisor.component.Types. This property is read/
write.

Name — Component name
string

Model component name. This property is read/write.

Methods

getPath Retrieve component path

1 Functions — Alphabetical List

1-110

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

See Also
Advisor.component.Types | slmetric.metric.Metric

More About
• “Model Metrics Results API” on page 4-2
• “Model Metrics”
• Class Attributes
• Property Attributes

Introduced in R2016a

 getPath

1-111

getPath
Class: Advisor.component.Component
Package: Advisor.component

Retrieve component path

Syntax

path = getPath(component)

Description

path = getPath(component) retrieves the path to the component.

Input Arguments

component — Component
Advisor.component.Component model object

Constructed Advisor.component.Component model object.

Output Arguments

path — Model component path
string

Model component path, specified as a string.

See Also
Advisor.component.Types

Introduced in R2016a

1 Functions — Alphabetical List

1-112

Advisor.component.Types class
Package: Advisor.component

Create enum class specifying component type

Description

Create an enumeration Advisor.component.Types class to specify the model
component type.

Construction

enum_comp_type = Advisor.component.Type.Model creates an enumeration of
component type Model. The following table lists the component types.

Type Description

Model Simulink block diagram.
LibraryBlock Library linked block.
MFile MATLAB code file.
ProtectedModel Protect Simulink block diagram.
SubSystem Simulink subsystem block.
ModelBlock Simulink model block.
Chart Stateflow chart or Stateflow block.
MATLABFunction MATLAB function block.

See Also
slmetric.metric.Metric | Advisor.component.Component

More About
• “Model Metrics”
• Class Attributes

 Advisor.component.Types class

1-113

• Property Attributes

Introduced in R2016a

1 Functions — Alphabetical List

1-114

ModelAdvisor.Action class
Package: ModelAdvisor

Add actions to custom checks

Description

Instances of this class define actions you take when the Model Advisor checks do not
pass. Users access actions by clicking the Action button that you define in the Model
Advisor window.

Construction

ModelAdvisor.Action Add actions to custom checks

Methods

setCallbackFcn Specify action callback function

Properties

Description Message in Action box
Name Action button label

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

Examples
% define action (fix) operation

 ModelAdvisor.Action class

1-115

myAction = ModelAdvisor.Action;

myAction.Name='Fix block fonts';

myAction.Description=...

 'Click the button to update all blocks with specified font';

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-116

ModelAdvisor.Action
Class: ModelAdvisor.Action
Package: ModelAdvisor

Add actions to custom checks

Syntax

action_obj = ModelAdvisor.Action

Description

action_obj = ModelAdvisor.Action creates a handle to an action object.

Note:

• Include an action definition in a check definition.

• Each check can contain only one action.

Examples
% define action (fix) operation

myAction = ModelAdvisor.Action;

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

 ModelAdvisor.Check class

1-117

ModelAdvisor.Check class
Package: ModelAdvisor

Create custom checks

Description

The ModelAdvisor.Check class creates a Model Advisor check object. Checks must
have an associated ModelAdvisor.Task object to be displayed in the Model Advisor
tree.

You can use one ModelAdvisor.Check object in multiple ModelAdvisor.Task objects,
allowing you to place the same check in multiple locations in the Model Advisor tree.
For example, Check for implicit signal resolution is displayed in the By Product >
Simulink folder and in the By Task > Model Referencing folder in the Model Advisor
tree.

When you use checks in task definitions, the following rules apply:

• If you define the properties of the check in the check definition and the task
definition, the task definition takes precedence. The Model Advisor displays the
information contained in the task definition. For example, if you define the name
of the check in the task definition using the ModelAdvisor.Task.DisplayName
property and in the check definition using the ModelAdvisor.Check.Title
property, the Model Advisor displays the information provided in
ModelAdvisor.Task.DisplayName.

• If you define the properties of the check in the check definition but not the task
definition, the task uses the properties from the check. For example, if you define the
name of the check in the check definition using the ModelAdvisor.Check.Title
property, and you register the check using a task definition, the Model Advisor
displays the information provided in ModelAdvisor.Check.Title.

• If you define the properties of the check in the task definition but not the check
definition, the Model Advisor displays the information as long as you register the
task with the Model Advisor instead of the check. For example, if you define the name
of the check in the task definition using the ModelAdvisor.Task.DisplayName
property instead of the ModelAdvisor.Check.Title property, and you register the
check using a task definition, the Model Advisor displays the information provided in
ModelAdvisor.Task.DisplayName.

1 Functions — Alphabetical List

1-118

Construction

ModelAdvisor.Check Create custom checks

Methods

getID Return check identifier
setAction Specify action for check
setCallbackFcn Specify callback function for check
setInputParameters Specify input parameters for check
setInputParametersLayoutGrid Specify layout grid for input parameters

Properties

CallbackContext Specify when to run check
CallbackHandle Callback function handle for check
CallbackStyle Callback function type
EmitInputParametersToReport Display check input parameters in the

Model Advisor report
Enable Indicate whether user can enable or disable

check
ID Identifier for check
LicenseName Product license names required to display

and run check
ListViewVisible Status of Explore Result button
Result Results cell array
supportExclusion Set to support exclusions
SupportLibrary Set to support library models
Title Name of check
TitleTips Description of check

 ModelAdvisor.Check class

1-119

Value Status of check
Visible Indicate to display or hide check

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

Examples
rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-120

ModelAdvisor.Check
Class: ModelAdvisor.Check
Package: ModelAdvisor

Create custom checks

Syntax

check_obj = ModelAdvisor.Check(check_ID)

Description

check_obj = ModelAdvisor.Check(check_ID) creates a check object, check_obj,
and assigns it a unique identifier, check_ID. check_ID must remain constant.
To display checks in the Model Advisor tree, checks must have an associated
ModelAdvisor.Task or ModelAdvisor.Root object.

Note: You can use one ModelAdvisor.Check object in multiple ModelAdvisor.Task
objects, allowing you to place the same check in multiple locations in the Model Advisor
tree. For example, Check for implicit signal resolution appears in the By Product
> Simulink folder and in the By Task > Model Referencing folder in the Model
Advisor tree.

Examples
rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

 ModelAdvisor.FactoryGroup class

1-121

ModelAdvisor.FactoryGroup class
Package: ModelAdvisor

Define subfolder in By Task folder

Description

The ModelAdvisor.FactoryGroup class defines a new subfolder to add to the By Task
folder.

Construction

ModelAdvisor.FactoryGroup Define subfolder in By Task folder

Methods

addCheck Add check to folder

Properties

Description Description of folder
DisplayName Name of folder
ID Identifier for folder
MAObj Model Advisor object

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

1 Functions — Alphabetical List

1-122

Examples
% --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

 ModelAdvisor.FactoryGroup

1-123

ModelAdvisor.FactoryGroup
Class: ModelAdvisor.FactoryGroup
Package: ModelAdvisor

Define subfolder in By Task folder

Syntax

fg_obj = ModelAdvisor.FactoryGroup(fg_ID)

Description

fg_obj = ModelAdvisor.FactoryGroup(fg_ID) creates a handle to a factory group
object, fg_obj, and assigns it a unique identifier, fg_ID. fg_ID must remain constant.

Examples
% --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-124

ModelAdvisor.FormatTemplate class
Package: ModelAdvisor

Template for formatting Model Advisor analysis results

Description

Use the ModelAdvisor.FormatTemplate class to format the result of a check in the
analysis result pane of the Model Advisor for a uniform look and feel among the checks
you create. There are two formats for the analysis result:

• Table
• List

Construction

ModelAdvisor.FormatTemplate Construct template object for formatting
Model Advisor analysis results

Methods

addRow Add row to table
setCheckText Add description of check to result
setColTitles Add column titles to table
setInformation Add description of subcheck to result
setListObj Add list of hyperlinks to model objects
setRecAction Add Recommended Action section and text
setRefLink Add See Also section and links
setSubBar Add line between subcheck results
setSubResultStatus Add status to check or subcheck result
setSubResultStatusText Add text below status in result
setSubTitle Add title for subcheck in result

 ModelAdvisor.FormatTemplate class

1-125

setTableInfo Add data to table
setTableTitle Add title to table

Copy Semantics
Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

Examples
The following code creates two template objects, ft1 and ft2, and uses them to format
the result of running the check in a table and a list. The result identifies the blocks in
the model. The graphics following the code display the output as it appears in the Model
Advisor when the check passes and fails.
function sl_customization(cm)

% register custom checks

cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% register custom factory group

cm.addModelAdvisorTaskFcn(@defineModelAdvisorTasks);

% -----------------------------

% defines Model Advisor Checks

% -----------------------------

function defineModelAdvisorChecks

% Define and register a sample check

rec = ModelAdvisor.Check('mathworks.example.SampleStyleOne');

rec.Title = 'Sample check for Model Advisor using the ModelAdvisor.FormatTemplate';

setCallbackFcn(rec, @SampleStyleOneCallback,'None','StyleOne');

mdladvRoot = ModelAdvisor.Root;

mdladvRoot.register(rec);

% -----------------------------

% defines Model Advisor Tasks

% -----------------------------

function defineModelAdvisorTasks

mdladvRoot = ModelAdvisor.Root;

% --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

rec.DisplayName='My Group 1';

1 Functions — Alphabetical List

1-126

rec.Description='Demo Factory Group';

rec.addCheck('mathworks.example.SampleStyleOne');

mdladvRoot.publish(rec); % publish inside By Group list

% -----------------------------

% Sample Check With Subchecks Callback Function

% -----------------------------

function ResultDescription = SampleStyleOneCallback(system)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

%Initialize variables

ResultDescription={};

ResultStatus = false; % Default check status is 'Warning'

mdladvObj.setCheckResultStatus(ResultStatus);

% Create FormatTemplate object for first subcheck, specify table format

ft1 = ModelAdvisor.FormatTemplate('TableTemplate');

% Add information describing the overall check

setCheckText(ft1, ['Find and report all blocks in the model. '...

 '(setCheckText method - Description of what the check reviews)']);

% Add information describing the subcheck

setSubTitle(ft1, 'Table of Blocks (setSubTitle method - Title of the subcheck)');

setInformation(ft1, ['Find and report all blocks in a table. '...

 '(setInformation method - Description of what the subcheck reviews)']);

% Add See Also section for references to standards

setRefLink(ft1, {{'Standard 1 reference (setRefLink method)'},

 {'Standard 2 reference (setRefLink method)'}});

% Add information to the table

setTableTitle(ft1, {'Blocks in the Model (setTableTitle method)'});

setColTitles(ft1, {'Index (setColTitles method)',

 'Block Name (setColTitles method)'});

% Perform the check actions

allBlocks = find_system(system);

if length(find_system(system)) == 1

 % Add status for subcheck

 setSubResultStatus(ft1, 'Warn');

 setSubResultStatusText(ft1, ['The model does not contain blocks. '...

 '(setSubResultStatusText method - Description of result status)']);

 setRecAction(ft1, {'Add blocks to the model. '...

 '(setRecAction method - Description of how to fix the problem)'});

 ResultStatus = false;

else

 % Add status for subcheck

 setSubResultStatus(ft1, 'Pass');

 setSubResultStatusText(ft1, ['The model contains blocks. '...

 '(setSubResultStatusText method - Description of result status)']);

 for inx = 2 : length(allBlocks)

 % Add information to the table

 addRow(ft1, {inx-1,allBlocks(inx)});

 end

 ModelAdvisor.FormatTemplate class

1-127

 ResultStatus = true;

end

% Pass table template object for subcheck to Model Advisor

ResultDescription{end+1} = ft1;

% Create FormatTemplate object for second subcheck, specify list format

ft2 = ModelAdvisor.FormatTemplate('ListTemplate');

% Add information describing the subcheck

setSubTitle(ft2, 'List of Blocks (setSubTitle method - Title of the subcheck)');

setInformation(ft2, ['Find and report all blocks in a list. '...

 '(setInformation method - Description of what the subcheck reviews)']);

% Add See Also section for references to standards

setRefLink(ft2, {{'Standard 1 reference (setRefLink method)'},

 {'Standard 2 reference (setRefLink method)'}});

% Last subcheck, supress line

setSubBar(ft2, false);

% Perform the subcheck actions

if length(find_system(system)) == 1

 % Add status for subcheck

 setSubResultStatus(ft2, 'Warn');

 setSubResultStatusText(ft2, ['The model does not contain blocks. '...

 '(setSubResultStatusText method - Description of result status)']);

 setRecAction(ft2, {'Add blocks to the model. '...

 '(setRecAction method - Description of how to fix the problem)'});

 ResultStatus = false;

else

 % Add status for subcheck

 setSubResultStatus(ft2, 'Pass');

 setSubResultStatusText(ft2, ['The model contains blocks. '...

 '(setSubResultStatusText method - Description of result status)']);

 % Add information to the list

 setListObj(ft2, allBlocks);

end

% Pass list template object for the subcheck to Model Advisor

ResultDescription{end+1} = ft2;

% Set overall check status

mdladvObj.setCheckResultStatus(ResultStatus);

The following graphic displays the output as it appears in the Model Advisor when the
check passes.

1 Functions — Alphabetical List

1-128

 ModelAdvisor.FormatTemplate class

1-129

The following graphic displays the output as it appears in the Model Advisor when the
check fails.

1 Functions — Alphabetical List

1-130

Alternatives

Use the Model Advisor Formatting API to format check analysis results. However, use
the ModelAdvisor.FormatTemplate class for a uniform look and feel among the
checks you create.

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

 ModelAdvisor.FormatTemplate

1-131

ModelAdvisor.FormatTemplate
Class: ModelAdvisor.FormatTemplate
Package: ModelAdvisor

Construct template object for formatting Model Advisor analysis results

Syntax

obj = ModelAdvisor.FormatTemplate('type')

Description

obj = ModelAdvisor.FormatTemplate('type') creates a handle, obj, to an
object of the ModelAdvisor.FormatTemplate class. type is a string identifying the
format type of the template, either list or table. Valid values are ListTemplate and
TableTemplate.

You must return the result object to the Model Advisor to display the formatted result in
the analysis result pane.

Note: Use the ModelAdvisor.FormatTemplate class in check callbacks.

Examples

Create a template object, ft, and use it to create a list template:
ft = ModelAdvisor.FormatTemplate('ListTemplate');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-132

• “Format Check Results”

 ModelAdvisor.Group class

1-133

ModelAdvisor.Group class
Package: ModelAdvisor

Define custom folder

Description

The ModelAdvisor.Group class defines a folder that is displayed in the Model Advisor
tree. Use folders to consolidate checks by functionality or usage.

Construction

ModelAdvisor.Group Define custom folder

Methods

addGroup Add subfolder to folder
addProcedure Add procedure to folder
addTask Add task to folder

Properties

Description Description of folder
DisplayName Name of folder
ID Identifier for folder
MAObj Model Advisor object

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

1 Functions — Alphabetical List

1-134

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

 ModelAdvisor.Group

1-135

ModelAdvisor.Group
Class: ModelAdvisor.Group
Package: ModelAdvisor

Define custom folder

Syntax

group_obj = ModelAdvisor.Group(group_ID)

Description

group_obj = ModelAdvisor.Group(group_ID) creates a handle to a group object,
group_obj, and assigns it a unique identifier, group_ID. group_ID must remain
constant.

Examples
MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-136

ModelAdvisor.Image class
Package: ModelAdvisor

Include image in Model Advisor output

Description

The ModelAdvisor.Image class adds an image to the Model Advisor output.

Construction

ModelAdvisor.Image Include image in Model Advisor output

Methods

setHyperlink Specify hyperlink location
setImageSource Specify image location

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

 ModelAdvisor.Image

1-137

ModelAdvisor.Image
Class: ModelAdvisor.Image
Package: ModelAdvisor

Include image in Model Advisor output

Syntax

object = ModelAdvisor.Image

Description

object = ModelAdvisor.Image creates a handle to an image object, object, that the
Model Advisor displays in the output. The Model Advisor supports many image formats,
including, but not limited to, JPEG, BMP, and GIF.

Examples
image_obj = ModelAdvisor.Image;

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

1 Functions — Alphabetical List

1-138

ModelAdvisor.InputParameter class

Package: ModelAdvisor

Add input parameters to custom checks

Description

Instances of the ModelAdvisor.InputParameter class specify the input parameters a
custom check uses in analyzing the model. Access input parameters in the Model Advisor
window.

Construction

ModelAdvisor.InputParameter Add input parameters to custom checks

Methods

setColSpan Specify number of columns for input
parameter

setRowSpan Specify rows for input parameter

Properties

Description Description of input parameter
Entries Drop-down list entries
Name Input parameter name
Type Input parameter type
Value Value of input parameter

 ModelAdvisor.InputParameter class

1-139

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-140

ModelAdvisor.InputParameter
Class: ModelAdvisor.InputParameter
Package: ModelAdvisor

Add input parameters to custom checks

Syntax

input_param = ModelAdvisor.InputParameter

Description

input_param = ModelAdvisor.InputParameter creates a handle to an input
parameter object, input_param.

Note: You must include input parameter definitions in a check definition.

Examples

Note: The following example is a fragment of code from the sl_customization.m file
for the example model, slvnvdemo_mdladv. The example does not execute as shown
without the additional content found in the sl_customization.m file.

 ModelAdvisor.InputParameter

1-141

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

rec.setInputParametersLayoutGrid([3 2]);

% define input parameters

inputParam1 = ModelAdvisor.InputParameter;

inputParam1.Name = 'Skip font checks.';

inputParam1.Type = 'Bool';

inputParam1.Value = false;

inputParam1.Description = 'sample tooltip';

inputParam1.setRowSpan([1 1]);

inputParam1.setColSpan([1 1]);

inputParam2 = ModelAdvisor.InputParameter;

inputParam2.Name = 'Standard font size';

inputParam2.Value='12';

inputParam2.Type='String';

inputParam2.Description='sample tooltip';

inputParam2.setRowSpan([2 2]);

inputParam2.setColSpan([1 1]);

inputParam3 = ModelAdvisor.InputParameter;

inputParam3.Name='Valid font';

inputParam3.Type='Combobox';

inputParam3.Description='sample tooltip';

inputParam3.Entries={'Arial', 'Arial Black'};

inputParam3.setRowSpan([2 2]);

inputParam3.setColSpan([2 2]);

rec.setInputParameters({inputParam1,inputParam2,inputParam3});

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-142

ModelAdvisor.LineBreak class
Package: ModelAdvisor

Insert line break

Description

Use instances of the ModelAdvisor.LineBreak class to insert line breaks in the Model
Advisor outputs.

Construction

ModelAdvisor.LineBreak Insert line break

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

 ModelAdvisor.LineBreak

1-143

ModelAdvisor.LineBreak
Class: ModelAdvisor.LineBreak
Package: ModelAdvisor

Insert line break

Syntax

ModelAdvisor.LineBreak

Description

ModelAdvisor.LineBreak inserts a line break into the Model Advisor output.

Examples

Add a line break between two lines of text:
result = ModelAdvisor.Paragraph;

addItem(result, [resultText1 ModelAdvisor.LineBreak resultText2]);

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

1 Functions — Alphabetical List

1-144

ModelAdvisor.List class
Package: ModelAdvisor

Create list class

Description

Use instances of the ModelAdvisor.List class to create list-formatted outputs.

Construction

ModelAdvisor.List Create list class

Methods

addItem Add item to list
setType Specify list type

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

 ModelAdvisor.List

1-145

ModelAdvisor.List
Class: ModelAdvisor.List
Package: ModelAdvisor

Create list class

Syntax

list = ModelAdvisor.List

Description

list = ModelAdvisor.List creates a list object, list.

Examples
subList = ModelAdvisor.List();

setType(subList, 'numbered')

addItem(subList, ModelAdvisor.Text('Sub entry 1', {'pass','bold'}));

addItem(subList, ModelAdvisor.Text('Sub entry 2', {'pass','bold'}));

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

1 Functions — Alphabetical List

1-146

ModelAdvisor.ListViewParameter class
Package: ModelAdvisor

Add list view parameters to custom checks

Description
The Model Advisor uses list view parameters to populate the Model Advisor Result
Explorer. Access the information in list views by clicking Explore Result in the Model
Advisor window.

Construction
ModelAdvisor.ListViewParameter Add list view parameters to custom checks

Properties
Attributes Attributes to display in Model Advisor

Report Explorer
Data Objects in Model Advisor Result Explorer
Name Drop-down list entry

Copy Semantics
Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

Examples

Note: The following example is a fragment of code from the sl_customization.m file
for the example model, slvnvdemo_mdladv. The example does not execute as shown
without the additional content found in the sl_customization.m file.

 ModelAdvisor.ListViewParameter class

1-147

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

mdladvObj.setCheckResultStatus(true);

% define list view parameters

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter

myLVParam.Data = get_param(searchResult,'object')';

myLVParam.Attributes = {'FontName'}; % name is default property

mdladvObj.setListViewParameters({myLVParam});

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-148

ModelAdvisor.ListViewParameter
Class: ModelAdvisor.ListViewParameter
Package: ModelAdvisor

Add list view parameters to custom checks

Syntax

lv_param = ModelAdvisor.ListViewParameter

Description

lv_param = ModelAdvisor.ListViewParameter defines a list view, lv_param.

Note: Include list view parameter definitions in a check definition.

See Also
“Model Advisor Customization”

How To
• “Define Model Advisor Result Explorer Views”
• “Create Model Advisor Checks”
• “Batch-Fix Warnings or Failures”
• “Customization Example”
• “getListViewParameters”
• “setListViewParameters”

 ModelAdvisor.lookupCheckID

1-149

ModelAdvisor.lookupCheckID
Package: ModelAdvisor

Look up Model Advisor check ID

Syntax

NewID = ModelAdvisor.lookupCheckID('OldCheckID')

Description

NewID = ModelAdvisor.lookupCheckID('OldCheckID') returns the check ID of
the check specified by OldCheckID. OldCheckID is the ID of a check prior to R2010b.

Input Arguments

OldCheckID

OldCheckID is the ID of a check prior to R2010b.

Output Arguments

NewID

Check ID that corresponds to the previous check ID identified by OldCheckID.

Examples

Look up the check ID for By Product > Simulink Verification and Validation
> Modeling Standards > DO-178C/DO-331 Checks > Check safety-related
optimization settings using the previous ID DO178B:OptionSet:
NewID = ModelAdvisor.lookupCheckID('DO178B:OptionSet');

1 Functions — Alphabetical List

1-150

Alternatives

“Archive and View Results”

More About
• “Archive and View Results”

See Also
ModelAdvisor.run

 ModelAdvisor.Paragraph class

1-151

ModelAdvisor.Paragraph class
Package: ModelAdvisor

Create and format paragraph

Description

The ModelAdvisor.Paragraph class creates and formats a paragraph object.

Construction

ModelAdvisor.Paragraph Create and format paragraph

Methods

addItem Add item to paragraph
setAlign Specify paragraph alignment

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

Examples
% Check Simulation optimization setting

ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check Simulation '...

'optimization settings:']);

See Also
“Model Advisor Customization”

1 Functions — Alphabetical List

1-152

How To
• “Create Model Advisor Checks”
• “Format Check Results”

 ModelAdvisor.Paragraph

1-153

ModelAdvisor.Paragraph
Class: ModelAdvisor.Paragraph
Package: ModelAdvisor

Create and format paragraph

Syntax

para_obj = ModelAdvisor.Paragraph

Description

para_obj = ModelAdvisor.Paragraph defines a paragraph object para_obj.

Examples
% Check Simulation optimization setting

ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check Simulation '...

'optimization settings:']);

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-154

ModelAdvisor.Procedure class
Package: ModelAdvisor

Define custom procedures

Description

The ModelAdvisor.Procedure class defines a procedure that is displayed in the Model
Advisor tree. Use procedures to organize additional procedures or checks by functionality
or usage.

Construction

ModelAdvisor.Procedure Define custom procedures

Properties

Description

Provides information about the procedure. Details about the procedure are displayed in
the right pane of the Model Advisor.

Default: ' ' (null string)

Name

Specifies the name of the procedure that is displayed in the Model Advisor.

Default: ' ' (null string)

ID

Specifies a permanent, unique identifier for the procedure.

Note:

 ModelAdvisor.Procedure class

1-155

• You must specify this field.

• The value of ID must remain constant.
• The Model Advisor generates an error if ID is not unique.
• Procedure definitions must refer to other procedures by ID.

MAObj

Specifies a handle to the current Model Advisor object.

Methods

addProcedure Add subprocedure to procedure
addTask Add task to procedure

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

See Also
“Model Advisor Customization”

How To
• “Create Procedures”
• “Create a Procedural-Based Configuration”
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-156

ModelAdvisor.Procedure
Class: ModelAdvisor.Procedure
Package: ModelAdvisor

Define custom procedures

Syntax

procedure_obj = ModelAdvisor.Procedure(procedure_ID)

Description

procedure_obj = ModelAdvisor.Procedure(procedure_ID) creates a handle to
a procedure object, procedure_obj, and assigns it a unique identifier, procedure_ID.
procedure_ID must remain constant.

Examples
MAP = ModelAdvisor.Procedure('com.mathworks.sample.ProcedureSample');

See Also
“Model Advisor Customization”

How To
• “Create Procedures”
• “Create a Procedural-Based Configuration”
• “Create Model Advisor Checks”

 ModelAdvisor.Root class

1-157

ModelAdvisor.Root class
Package: ModelAdvisor

Identify root node

Description

The ModelAdvisor.Root class returns the root object.

Construction

ModelAdvisor.Root Identify root node

Methods

publish Publish object in Model Advisor root
register Register object in Model Advisor root

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-158

ModelAdvisor.Root
Class: ModelAdvisor.Root
Package: ModelAdvisor

Identify root node

Syntax

root_obj = ModelAdvisor.Root

Description

root_obj = ModelAdvisor.Root creates a handle to the root object, root_obj.

Examples
mdladvRoot = ModelAdvisor.Root;

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

 ModelAdvisor.run

1-159

ModelAdvisor.run
Package: ModelAdvisor

Run Model Advisor checks on systems

Syntax

SysResultObjArray = ModelAdvisor.run(SysList,CheckIDList,Name,Value)

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',

FileName,Name,Value)

Description

SysResultObjArray = ModelAdvisor.run(SysList,CheckIDList,Name,Value)

runs the Model Advisor on the systems provided by SysList with additional options
specified by one or more optional Name,Value pair arguments. CheckIDList contains
cell array of check IDs to run.

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',

FileName,Name,Value) runs the Model Advisor on the systems provided by SysList.
The list of checks to run is specified using a Model Advisor configuration file, specified by
FileName.

Input Arguments

SysList

Cell array of systems to run.

CheckIDList

Cell array of check IDs to run. For details on how to find check IDs, see “Find Check
IDs”.

CheckIDList optionally can include input parameters for specific checks using the
following syntax; {'CheckID','InputParam',{'IP','IPV'}}, where IP is the input

1 Functions — Alphabetical List

1-160

parameter name and IPV is the corresponding input parameter value. You can specify
several input parameter name and value pair arguments in any order as IP1,IPV1,
…,IPN,IPVN.

FileName

Name of the Model Advisor configuration file. For details on creating a configuration file,
see “Organize Checks and Folders Using the Model Advisor Configuration Editor”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'DisplayResults'

Setting DisplayResults to 'Summary' displays a summary of the system results in the
Command Window. Setting DisplayResults to 'Details' displays the following in
the Command Window:

• Which system the Model Advisor is checking while the run is in progress.
• For each system, the pass and fail results of each check.
• A summary of the system results.

Setting DisplayResults to 'None' displays no information in the Command Window.

Default: 'Summary'

'Force'

Setting Force to 'On' removes existing modeladvisor/system folders. Setting Force
to 'Off' prompts you before removing existing modeladvisor/system folders.

Default: 'Off'

'ParallelMode'

Setting ParallelMode to 'On' runs the Model Advisor in parallel mode if you have a
Parallel Computing Toolbox license and a multicore machine. The Parallel Computing
Toolbox does not support 32-bit Windows® machines. Each parallel process runs checks

 ModelAdvisor.run

1-161

on one model at a time. For an example, see “Create a Function for Checking Multiple
Systems in Parallel”.

Default: 'Off'

'TempDir'

Setting TempDir to 'On' runs the Model Advisor from a temporary working folder, to
avoid concurrency issues when running using a parallel pool. For more information, see
“Resolving Data Concurrency Issues”. Setting TempDir to 'Off' runs the Model Advisor
in the current working folder.

Default: 'Off'

'ShowExclusions'

Setting ShowExclusions to 'On' lists Model Advisor check exclusions in the report.
Setting ShowExclusions to ‘Off’ does not list Model Advisor check exclusion in the
report.

Default: 'On'

Output Arguments

SysResultObjArray

Cell array of ModelAdvisor.SystemResult objects, one for each model specified
in SysList. Each ModelAdvisor.SystemResult object contains an array of
CheckResultObj objects. Save SysResultObjArray to review results at a later time
without having to rerun the Model Advisor (see “Save and Load Process for Objects”).

CheckResultObj

Array of ModelAdvisor.CheckResult objects, one for each check that runs.

Examples

Runs the Model Advisor checks Check model diagnostic parameters and Check for
fully defined interface on the sldemo_auto_climatecontrol/Heater Control
and sldemo_auto_climatecontrol/AC Control subsystems:

1 Functions — Alphabetical List

1-162

% Create list of checks and models to run.

CheckIDList ={'mathworks.maab.jc_0021',...

 'mathworks.iec61508.RootLevelInports'};

SysList={'sldemo_auto_climatecontrol/Heater Control',...

 'sldemo_auto_climatecontrol/AC Control'};

% Run the Model Advisor.

SysResultObjArray = ModelAdvisor.run(SysList,CheckIDList);

Runs the Model Advisor configuration file slvnvdemo_mdladv_config.mat
on the sldemo_auto_climatecontrol/Heater Control and
sldemo_auto_climatecontrol/AC Control subsystems:
% Identify Model Advisor configuration file.

% Create list of models to run.

fileName = 'slvnvdemo_mdladv_config.mat';

SysList={'sldemo_auto_climatecontrol/Heater Control',...

 'sldemo_auto_climatecontrol/AC Control'};

% Run the Model Advisor.

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

Alternatives

• Use the Model Advisor GUI to run each system, one at a time.
• Create a script or function using the Simulink.ModelAdvisor class to run each

system, one at a time.

More About

Tips

• If you have a Parallel Computing Toolbox™ license and a multicore machine, Model
Advisor can run on multiple systems in parallel. You can run the Model Advisor in
parallel mode by using ModelAdvisor.run with ‘ParallelMode’ set to ‘On’. By
default, ‘ParallelMode’ is set to ‘Off’. When you use ModelAdvisor.run with
‘ParallelMode’ set to ‘On’, MATLAB automatically creates a parallel pool.

• “Automate Model Advisor Check Execution”
• “Find Check IDs”
• “Organize Checks and Folders Using the Model Advisor Configuration Editor”
• “Save and Load Process for Objects”

 ModelAdvisor.run

1-163

See Also
ModelAdvisor.summaryReport | view | viewReport |
ModelAdvisor.lookupCheckID

1 Functions — Alphabetical List

1-164

ModelAdvisor.summaryReport
Package: ModelAdvisor

Open Model Advisor Command-Line Summary report

Syntax

ModelAdvisor.summaryReport(SysResultObjArray)

Description

ModelAdvisor.summaryReport(SysResultObjArray) opens the Model Advisor
Command-Line Summary report in a web browser. SysResultObjArray is a cell array of
ModelAdvisor.SystemResult objects returned by ModelAdvisor.run.

Input Arguments

SysResultObjArray

Cell array of ModelAdvisor.SystemResult objects returned by ModelAdvisor.run.

Examples

Opens the Model Advisor Command-Line Summary report after running the Model
Advisor:
% Identify Model Advisor configuration file.

% Create list of models to run.

fileName = 'slvnvdemo_mdladv_config.mat';

SysList={'sldemo_auto_climatecontrol/Heater Control',...

 'sldemo_auto_climatecontrol/AC Control'};

% Run the Model Advisor.

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

% Open the Model Advisor Command-Line Summary report.

ModelAdvisor.summaryReport(SysResultObjArray)

 ModelAdvisor.summaryReport

1-165

Alternatives

“View Results in Model Advisor Command-Line Summary Report”

More About
• “Automate Model Advisor Check Execution”
• “Archive and View Model Advisor Run Results”

See Also
ModelAdvisor.run | view | viewReport

1 Functions — Alphabetical List

1-166

ModelAdvisor.Table class
Package: ModelAdvisor

Create table

Description

Instances of the ModelAdvisor.Table class create and format a table. Specify the
number of rows and columns in a table, excluding the table title and table heading row.

Construction

ModelAdvisor.Table Create table

Methods

getEntry Get table cell contents
setColHeading Specify table column title
setColHeadingAlign Specify column title alignment
setColHeadingValign Specify column title vertical alignment
setColWidth Specify column widths
setEntries Set contents of table
setEntry Add cell to table
setEntryAlign Specify table cell alignment
setEntryValign Specify table cell vertical alignment
setHeading Specify table title
setHeadingAlign Specify table title alignment
setRowHeading Specify table row title
setRowHeadingAlign Specify table row title alignment
setRowHeadingValign Specify table row title vertical alignment

 ModelAdvisor.Table class

1-167

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

1 Functions — Alphabetical List

1-168

ModelAdvisor.Table
Class: ModelAdvisor.Table
Package: ModelAdvisor

Create table

Syntax

table = ModelAdvisor.Table(row, column)

Description

table = ModelAdvisor.Table(row, column) creates a table object (table). The
Model Advisor displays the table object containing the number of rows (row) and columns
(column) that you specify.

Examples

Create two table objects

Create two table objects, table1 and table2. The Model Advisor displays table1 in the
results as a table with one row and one column. The Model Advisor display table2 in
the results as a table with two rows and three columns.

table1 = ModelAdvisor.Table(1,1);

table2 = ModelAdvisor.Table(2,3);

Create table with five rows and five columns

Create a table with five rows and five columns containing randomly generated numbers.

Use the following MATLAB code in a callback function. The Model Advisor displays
table1 in the results.
% ModelAdvisor.Table example

matrixData = rand(5,5) * 10^5;

 ModelAdvisor.Table

1-169

% initialize a table with 5 rows and 5 columns (heading rows not counting)

table1 = ModelAdvisor.Table(5,5);

% set column headings

for n=1:5

 table1.setColHeading(n, ['Column ', num2str(n)]);

end

% set alignment of second column heading

table1.setColHeadingAlign(2, 'center');

% set column width of second column

table1.setColWidth(2, 3);

% set row headings

for n=1:5

 table1.setRowHeading(n, ['Row ', num2str(n)]);

end

% set Table content

for rowIndex=1:5

 for colIndex=1:5

 table1.setEntry(rowIndex, colIndex, ...

 num2str(matrixData(rowIndex, colIndex)));

 % set alignment of entries in second row

 if colIndex == 2

 table1.setEntryAlign(rowIndex, colIndex, 'center');

 end

 end

end

% overwrite content of cell 3,3 with a ModelAdvisor.Text

text = ModelAdvisor.Text('Example Text');

table1.setEntry(3,3, text)

See Also
ModelAdvisor.Table.setColHeading |
ModelAdvisor.Table.setColHeadingAlign |

1 Functions — Alphabetical List

1-170

ModelAdvisor.Table.setColWidth | ModelAdvisor.Table.setRowHeading
| ModelAdvisor.Table.setEntry | ModelAdvisor.Table.setEntryAlign |
ModelAdvisor.Text

How To
• “Create Callback Functions and Results”

 ModelAdvisor.Task class

1-171

ModelAdvisor.Task class
Package: ModelAdvisor

Define custom tasks

Description

The ModelAdvisor.Task class is a wrapper for a check so that you can access the check
with the Model Advisor.

You can use one ModelAdvisor.Check object in multiple ModelAdvisor.Task objects,
allowing you to place the same check in multiple locations in the Model Advisor tree.
For example, Check for implicit signal resolution is displayed in the By Product >
Simulink folder and in the By Task > Model Referencing folder in the Model Advisor
tree.

When adding checks as tasks, the Model Advisor uses the task properties instead of the
check properties, except for Visible and LicenseName.

Construction

ModelAdvisor.Task Define custom tasks

Methods

setCheck Specify check used in task

Properties

Description Description of task
DisplayName Name of task
Enable Indicate if user can enable and disable task

1 Functions — Alphabetical List

1-172

ID Identifier for task
LicenseName Product license names required to display

and run task
MAObj Model Advisor object
Value Status of task
Visible Indicate to display or hide task

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

Examples
MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');

MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

 ModelAdvisor.Task

1-173

ModelAdvisor.Task
Class: ModelAdvisor.Task
Package: ModelAdvisor

Define custom tasks

Syntax

task_obj = ModelAdvisor.Task(task_ID)

Description

task_obj = ModelAdvisor.Task(task_ID) creates a task object, task_obj, with
a unique identifier, task_ID. task_ID must remain constant. If you do not specify
task_ID, the Model Advisor assigns a random task_ID to the task object.

You can use one ModelAdvisor.Check object in multiple ModelAdvisor.Task objects,
allowing you to place the same check in multiple locations in the Model Advisor tree.
For example, Check for implicit signal resolution appears in the By Product
> Simulink folder and in the By Task > Model Referencing folder in the Model
Advisor tree.

When adding checks as tasks, the Model Advisor uses the task properties instead of the
check properties, except for Visible and LicenseName.

Examples

In the following example, you create three task objects, MAT1, MAT2, and MAT3.

MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');

MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

See Also
“Model Advisor Customization”

1 Functions — Alphabetical List

1-174

How To
• “Create Model Advisor Checks”

 ModelAdvisor.Text class

1-175

ModelAdvisor.Text class
Package: ModelAdvisor

Create Model Advisor text output

Description

Instances of ModelAdvisor.Text class create formatted text for the Model Advisor
output.

Construction

ModelAdvisor.Text Create Model Advisor text output

Methods

setBold Specify bold text
setColor Specify text color
setHyperlink Specify hyperlinked text
setItalic Italicize text
setRetainSpaceReturn Retain spacing and returns in text
setSubscript Specify subscripted text
setSuperscript Specify superscripted text
setUnderlined Underline text

Copy Semantics

Handle. To learn how this affects your use of the class, see Copying Objects in the
MATLAB Programming Fundamentals documentation.

1 Functions — Alphabetical List

1-176

Examples
t1 = ModelAdvisor.Text('This is some text');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

 ModelAdvisor.Text

1-177

ModelAdvisor.Text
Class: ModelAdvisor.Text
Package: ModelAdvisor

Create Model Advisor text output

Syntax
text = ModelAdvisor.Text(content, {attribute})

Description
text = ModelAdvisor.Text(content, {attribute}) creates a text object for the
Model Advisor output.

Input Arguments
content Optional string specifying the content of the text object. If

content is empty, empty text is output.
attribute Optional cell array of strings specifying the formatting of the

content. If no attribute is specified, the output text has default
coloring with no formatting. Possible formatting options include:

• normal (default) — Text is default color and style.
• bold — Text is bold.
• italic — Text is italicized.
• underline — Text is underlined.
• pass — Text is green.
• warn — Text is yellow.
• fail — Text is red.
• keyword — Text is blue.
• subscript — Text is subscripted.
• superscript — Text is superscripted.

1 Functions — Alphabetical List

1-178

Output Arguments

text The text object you create

Examples
text = ModelAdvisor.Text('Sub entry 1', {'pass','bold'})

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

 overflowsaturationinfo

1-179

overflowsaturationinfo
Retrieve saturation on integer overflow coverage from cvdata object

Syntax
coverage = overflowsaturationinfo(covdata, object)

coverage = overflowsaturationinfo(covdata, object,

ignore_descendants)

[coverage, description] = overflowsaturationinfo(covdata, object)

Description
coverage = overflowsaturationinfo(covdata, object) returns saturation on
integer overflow coverage results from the cvdata object covdata for the model object
specified by object and its descendants.

coverage = overflowsaturationinfo(covdata, object,

ignore_descendants) returns saturation on integer overflow coverage results from the
cvdata object covdata for the model object specified by object and, depending on the
value of ignore_descendants, descendant objects.

[coverage, description] = overflowsaturationinfo(covdata, object)

returns saturation on integer overflow coverage results from the cvdata object covdata
for the model object specified by object, and textual descriptions of each coverage
outcome.

Examples

Collect Saturation on Integer Overflow Coverage for MinMax Block

Collect saturation on integer overflow coverage information for a MinMax block in the
example model sldemo_fuelsys.

Open the sldemo_fuelsys example model. Create a model coverage test specification
object for the Mixing & Combustion subsystem of the Engine Gas Dynamics subsystem.

open_system('sldemo_fuelsys');

1 Functions — Alphabetical List

1-180

testObj = cvtest('sldemo_fuelsys/Engine Gas Dynamics/' ...

 'Mixing & Combustion');

In the model coverage test specification object, specify to collect saturation on overflow
coverage.

testObj.settings.overflowsaturation = 1;

Simulate the model and collect coverage results in a new cvdata object.

dataObj = cvsim(testObj);

Get the saturation on overflow coverage results for the MinMax block in the Mixing &
Combustion subsystem. The coverage results are stored in a two-element vector of the
form [covered_outcomes total_outcomes].

blockHandle = get_param('sldemo_fuelsys/' ...

 'Engine Gas Dynamics/Mixing & Combustion/MinMax','Handle');

covResults = overflowsaturationinfo(dataObj, blockHandle)

covResults =

 1 2

One out of two saturation on integer overflow decision outcomes were satisfied for the
MinMax block in the Mixing & Combustion subsystem, so it received 50% saturation on
integer overflow coverage.

Collect Saturation on Integer Overflow Coverage and Description for Example Model

Collect saturation on integer overflow coverage for the example model
slvnvdemo_saturation_on_overflow_coverage. Review collected coverage results
and description for Sum block in Controller subsystem.

Open the slvnvdemo_saturation_on_overflow_coverage example model.

open_system('slvnvdemo_saturation_on_overflow_coverage');

Simulate the model and collect coverage results in a new cvdata object.

dataObj = cvsim('slvnvdemo_saturation_on_overflow_coverage');

Retrieve saturation on integer overflow coverage results and description for the Sum
block in the Controller subsystem of the Test Unit subsystem.

[covResults covDesc] = overflowsaturationinfo(dataObj, ...

 'slvnvdemo_saturation_on_overflow_coverage/Test Unit /' ...

 overflowsaturationinfo

1-181

 'Controller/Sum')

covResults =

 1 2

covDesc =

 isFiltered: 0

 decision: [1x1 struct]

One out of two saturation on integer overflow decision outcomes were satisfied for the
Sum block, so it received 50% saturation on integer overflow coverage.

Review the number of times the Sum block evaluated to each saturation on integer
overflow outcome during simulation.

covDesc.decision.outcome(1)

ans =

 executionCount: 3

 text: 'false'

covDesc.decision.outcome(2)

ans =

 executionCount: 0

 text: 'true'

During simulation, integer overflow did not occur in the Sum block.

If integer overflow is not possible for a block in your model, consider clearing the
Saturate on integer overflow block parameter to optimize efficiency of your generated
code.

• “Command Line Verification Tutorial”

Input Arguments

covdata — Coverage results data
cvdata object

1 Functions — Alphabetical List

1-182

Coverage results data, specified as a cvdata object.

object — Model or model component
full path | handle

Model or model component, specified as a full path, handle, or array of paths or handles.

Object Specification Description

BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a Stateflow chart

or atomic subchart and the ID of an object
contained in that chart or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart
or atomic subchart and a Stateflow object API
handle contained in that chart or subchart

[BlockHandle, sfID] Array with a handle to a Stateflow chart
or atomic subchart and the ID of an object
contained in that chart or subchart

Example: 'slvnvdemo_saturation_on_overflow_coverage'

Example: get_param('slvnvdemo_cv_small_controller/Saturation',
'Handle')

ignore_descendants — Preference to ignore coverage of descendant objects
0 (default) | 1

Preference to ignore coverage of descendant objects, specified as a logical value.
1 — Ignore coverage of descendant objects
0 — Collect coverage for descendant objects

Data Types: logical

 overflowsaturationinfo

1-183

Output Arguments

coverage — Saturation on overflow coverage results for object
numerical vector

Saturation on overflow coverage results, stored in a two-element vector of the form
[covered_outcomes total_outcomes]. The two elements are:

covered_outcomes Number of saturation on integer overflow
outcomes satisfied for object

total_outcomes Total number of saturation on integer
overflow outcomes for object

Data Types: double

description — Textual description of coverage outcomes
structure array

Textual description of coverage outcomes for the model component specified by object,
returned as a structure array. Depending on the types of model coverage collected, the
structure array can have different fields. If only saturation on overflow coverage is
collected, the structure array contains the following fields:

isFiltered 0 if the model component specified by
object is not excluded from coverage
recording. 1 if the model component
specified by object is excluded from
coverage recording. For more information
about excluding objects from coverage, see
“Coverage Filtering”.

decision.text 'Saturate on integer overflow'

decision.outcome Structure array containing two fields for
each coverage outcome:

executionCount Number of times
saturation on
integer overflow for
object evaluated

1 Functions — Alphabetical List

1-184

to the outcome
described by text.

text 'true' or 'false'

Saturation on integer overflow has two
possible outcomes, 'true' and 'false'.

decision.isFiltered 0 if the model component specified by
object is not excluded from coverage
recording. 1 if the model component
specified by object is excluded from
coverage recording. For more information
about excluding objects from coverage, see
“Coverage Filtering”.

decision.filterRationale Rationale for filtering the model component
specified by object, if object is excluded
from coverage and a rationale is specified.
For more information about excluding
objects from coverage, see “Coverage
Filtering”.

Data Types: struct

More About
• “Saturate on Integer Overflow Coverage”

See Also
complexityinfo | conditioninfo | cvsim | cvtest | decisioninfo |
getCoverageInfo | mcdcinfo | sigrangeinfo | sigsizeinfo | tableinfo

 relationalboundaryinfo

1-185

relationalboundaryinfo
Retrieve relational boundary coverage from cvdata object

Syntax

coverage = relationalboundaryinfo(covdata, object)

coverage = relationalboundaryinfo(covdata, object,

ignore_descendants)

[coverage, description] = relationalboundaryinfo(covdata, object)

Description

coverage = relationalboundaryinfo(covdata, object) returns relational
boundary coverage results from the cvdata object covdata for the model object specified
by object and its descendants.

coverage = relationalboundaryinfo(covdata, object,

ignore_descendants) returns relational boundary coverage results from the cvdata
object covdata for the model object specified by object and, depending on the value of
ignore_descendants, descendant objects.

[coverage, description] = relationalboundaryinfo(covdata, object)

returns relational boundary coverage results from the cvdata object covdata for the
model object specified by object, and textual descriptions of each coverage outcome.

Examples

Collect Relational Boundary Coverage for Supported Block in Model

This example shows how to collect relational boundary coverage information for a
Saturation block in a model. For more information on blocks supported for relational
boundary coverage, see “Model Objects That Receive Coverage”.

Open the slvnvdemo_cv_small_controller model. Create a model coverage test
specification object for the model.

1 Functions — Alphabetical List

1-186

open_system('slvnvdemo_cv_small_controller');

testObj = cvtest('slvnvdemo_cv_small_controller');

In the model coverage test specification object, activate relational boundary coverage.

testObj.settings.relationalop = 1;

Simulate the model and collect coverage results in a cvdata object.

dataObj = cvsim(testObj);

Obtain relational boundary coverage results for the Saturation block in
slvnvdemo_cv_small_controller. The coverage results are stored in a two-element
vector of the form [covered_outcomes total_outcomes].

blockHandle = get_param('slvnvdemo_cv_small_controller/Saturation','Handle');;

[covResults covDesc] = relationalboundaryinfo(dataObj, blockHandle)

covResults =

 2 4

covDesc =

 isFiltered: 0

 decision: [1x2 struct]

The field decision is a 1 X 2 structure. Each element of decision corresponds to
a relational operation in the block. The Saturation block contains two comparisons.
The first comparison is with a lower limit and the second with an upper limit. Therefore,
decision is a 2-element structure.

View the first operation in the block that receives relational boundary coverage. For the
Saturation block, the first relational operation is input > lowerlimit.

covDesc.decision(1)

ans =

 outcome: [1x2 struct]

 text: 'input - lowerlimit'

 isFiltered: 0

 relationalboundaryinfo

1-187

 filterRationale: ''

The text field shows the two operands. The isFiltered field is set to 1 if the block
is filtered from relational boundary coverage. For more information, see “Coverage
Filtering”.

View results for the first relational operation in the block.

for(i=1:2)

 covDesc.decision(1).outcome(i)

end

ans =

 isActive: 1

 execCount: 0

 text: '[-tol..0]'

ans =

 isActive: 1

 execCount: 0

 text: '(0..tol]'

View the second operation in the block that receives relational boundary coverage. For
the Saturation block, the second relational operation is input < upperlimit.

covDesc.decision(2)

ans =

 outcome: [1x2 struct]

 text: 'input - upperlimit'

 isFiltered: 0

 filterRationale: ''

View results for the second relational operation in the block.

for(i=1:2)

 covDesc.decision(2).outcome(i)

end

ans =

1 Functions — Alphabetical List

1-188

 isActive: 1

 execCount: 1

 text: '[-tol..0)'

ans =

 isActive: 1

 execCount: 2

 text: '[0..tol]'

• “Command Line Verification Tutorial”

Input Arguments

covdata — Coverage results data
cvdata object

Coverage results data, specified as a cvdata object.

object — Model or model component
full path | handle

Model or model component, specified as a full path, handle, or array of paths or handles.

Object Specification Description

BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a Stateflow chart

or atomic subchart and the ID of an object
contained in that chart or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart
or atomic subchart and a Stateflow object API
handle contained in that chart or subchart

 relationalboundaryinfo

1-189

Object Specification Description

[BlockHandle, sfID] Array with a handle to a Stateflow chart
or atomic subchart and the ID of an object
contained in that chart or subchart

Example: get_param('slvnvdemo_cv_small_controller/Saturation',
'Handle')

ignore_descendants — Preference to ignore coverage of descendant objects
0 (default) | 1

Preference to ignore coverage of descendant objects, specified as a logical value.
1 — Ignore coverage of descendant objects
0 — Collect coverage for descendant objects

Data Types: logical

Output Arguments

coverage — Relational boundary coverage results for object
numerical vector

Relational boundary coverage results, stored in a two-element vector of the form
[covered_outcomes total_outcomes]. The two elements are:

covered_outcomes Number of relational boundary outcomes
satisfied for object

total_outcomes Total number of relational boundary
outcomes for object

Data Types: double

description — Textual description of coverage outcomes
structure array

Textual description of coverage outcomes for the model component specified by object,
returned as a structure array. Depending on the types of model coverage collected, the

1 Functions — Alphabetical List

1-190

structure array can have different fields. If only relational boundary coverage is collected,
the structure array contains the following fields:

isFiltered 0 if the model component specified by
object is not excluded from coverage
recording. 1 if the model component
specified by object is excluded from
coverage recording. For more information
about excluding objects from coverage, see
“Coverage Filtering”.

decision.text String of the form:

op_1-op_2

• op_1 is the left operand in the
relational operation.

• op_2 is the right operand in the
relational operation.

decision.outcome Structure array containing two fields for
each coverage outcome:

isActive Boolean variable.
If this variable is
false, it indicates
that decisions were
not evaluated during
simulation due to
variable signal size.

execCount Number of times
op_1-op_2 fell in
the range described
by text

text The range around
the relational
boundary considered
for coverage. For
more information,

 relationalboundaryinfo

1-191

see “Relational
Boundary”.

decision.isFiltered 0 if the model component specified by
object is not excluded from coverage
recording. 1 if the model component
specified by object is excluded from
coverage recording. For more information
about excluding objects from coverage, see
“Coverage Filtering”.

decision.filterRationale Rationale for filtering the model component
specified by object, if object is excluded
from coverage and a rationale is specified.
For more information about excluding
objects from coverage, see “Coverage
Filtering”.

Data Types: struct

More About
• “Relational Boundary Coverage”

See Also
complexityinfo | conditioninfo | cvsim | cvtest | decisioninfo |
getCoverageInfo | mcdcinfo | overflowsaturationinfo | sigrangeinfo |
sigsizeinfo | tableinfo

1 Functions — Alphabetical List

1-192

publish

Class: ModelAdvisor.Root
Package: ModelAdvisor

Publish object in Model Advisor root

Syntax

publish(root_obj, check_obj, location)

publish(root_obj, group_obj)

publish(root_obj, procedure_obj)

publish(root_obj, fg_obj)

Description

publish(root_obj, check_obj, location) specifies where the Model Advisor
places the check in the Model Advisor tree. location is either one of the subfolders
in the By Product folder, or the name of a new subfolder to put in the By Product
folder. Use a pipe-delimited string to indicate multiple subfolders. For example, to add a
check to the Simulink Verification and Validation > Modeling Standards folder,
use the following string: 'Simulink Verification and Validation|Modeling
Standards'.

If the By Product is not displayed in the Model Advisor window, select Show By
Product Folder from the Settings > Preferences dialog box.

publish(root_obj, group_obj) specifies the ModelAdvisor.Group object to
publish as a folder in the Model Advisor Task Manager folder.

publish(root_obj, procedure_obj) specifies the ModelAdvisor.Procedure
object to publish.

publish(root_obj, fg_obj) specifies the ModelAdvisor.FactoryGroup object to
publish as a subfolder in the By Task folder.

 publish

1-193

Examples
% publish check into By Product > Demo group.

mdladvRoot.publish(rec, 'Demo');

How To
• “Define Where Custom Checks Appear”
• “Define Where Tasks Appear”
• “Define Where Custom Folders Appear”

1 Functions — Alphabetical List

1-194

register
Class: ModelAdvisor.Root
Package: ModelAdvisor

Register object in Model Advisor root

Syntax

register(MAobj, obj)

Description

register(MAobj, obj) registers the object, obj, in the root object MAobj.

In the Model Advisor memory, the register method registers the following types of
objects:

• ModelAdvisor.Check

• ModelAdvisor.FactoryGroup

• ModelAdvisor.Group

• ModelAdvisor.Procedure

• ModelAdvisor.Task

The register method places objects in the Model Advisor memory that you use in other
functions. The register method does not place objects in the Model Advisor tree.

Examples
mdladvRoot = ModelAdvisor.Root;

MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT1.DisplayName='Example task with input parameter and auto-fix ability';

MAT1.setCheck('com.mathworks.sample.Check1');

mdladvRoot.register(MAT1);

MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');

MAT2.DisplayName='Example task 2';

 register

1-195

MAT2.setCheck('com.mathworks.sample.Check2');

mdladvRoot.register(MAT2);

MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

MAT3.DisplayName='Example task 3';

MAT3.setCheck('com.mathworks.sample.Check3');

mdladvRoot.register(MAT3)

1 Functions — Alphabetical List

1-196

rmi
Interact programmatically with Requirements Management Interface

Syntax

reqlinks = rmi('createEmpty')

reqlinks = rmi('get', model)

reqlinks = rmi('get', sig_builder, group_idx)

rmi('set', model, reqlinks)

rmi('set', sig_builder, reqlinks, group_idx)

rmi('cat', model, reqlinks)

cnt = rmi('count', model)

rmi('clearAll', object)

rmi('clearAll', object, 'deep')

rmi('clearAll', object, 'noprompt')

rmi('clearAll', object, 'deep', 'noprompt')

cmdStr = rmi('navCmd', object)

[cmdStr, titleStr] = rmi('navCmd', object)

object = rmi('guidlookup', model, guidStr)

rmi('highlightModel', object)

rmi('unhighlightModel', object)

rmi('view', object, index)

dialog = rmi('edit', object)

guidStr = rmi('guidget', object)

rmi('report', model)

rmi('report', matlabFilePath)

rmi('report', dictionaryFile)

rmi('projectreport')

rmi setup

rmi register linktypename

rmi unregister linktypename

rmi linktypelist

number_problems = rmi('checkdoc')

 rmi

1-197

number_problems = rmi('checkdoc', docName)

rmi('check', matlabFilePath)

rmi('check', dictionaryFile)

rmi('doorssync', model)

rmi('setDoorsLabelTemplate', template)

template = rmi('getDoorsLabelTemplate')

label = rmi('doorsLabel', moduleID, objectID)

totalModifiedLinks = rmi('updateDoorsLabels', model)

Description

reqlinks = rmi('createEmpty') creates an empty instance of the requirement links
data structure.

reqlinks = rmi('get', model) returns the requirement links data structure for
model.

reqlinks = rmi('get', sig_builder, group_idx) returns the requirement links
data structure for the Signal Builder group specified by the index group_idx.

rmi('set', model, reqlinks) sets reqlinks as the requirements links for model.

rmi('set', sig_builder, reqlinks, group_idx) sets reqlinks as the
requirements links for the signal group group_idx in the Signal Builder block
sig_builder.

rmi('cat', model, reqlinks) adds the requirements links in reqlinks to existing
requirements links for model.

cnt = rmi('count', model) returns the number of requirements links for model.

rmi('clearAll', object) deletes all requirements links for object.

rmi('clearAll', object, 'deep') deletes all requirements links in the model
containing object.

rmi('clearAll', object, 'noprompt') deletes all requirements links for object
and does not prompt for confirmation.

1 Functions — Alphabetical List

1-198

rmi('clearAll', object, 'deep', 'noprompt') deletes all requirements links in
the model containing object and does not prompt for confirmation.

cmdStr = rmi('navCmd', object) returns the MATLAB command string cmdStr
used to navigate to object.

[cmdStr, titleStr] = rmi('navCmd', object) returns the MATLAB command
string cmdStr and the title string titleStr that provides descriptive text for object.

object = rmi('guidlookup', model, guidStr) returns the object name in
model that has the globally unique identifier guidStr.

rmi('highlightModel', object) highlights all of the objects in the parent model of
object that have requirement links.

rmi('unhighlightModel', object) removes highlighting of objects in the parent
model of object that have requirement links.

rmi('view', object, index) accesses the requirement numbered index in the
requirements document associated with object.

dialog = rmi('edit', object) displays the Requirements dialog box for object
and returns the handle of the dialog box.

guidStr = rmi('guidget', object) returns the globally unique identifier for
object. A globally unique identifier is created for object if it lacks one.

rmi('report', model) generates a Requirements Traceability report in HTML format
for model.

rmi('report', matlabFilePath) generates a Requirements Traceability report in
HTML format for the MATLAB code file specified by matlabFilePath.

rmi('report', dictionaryFile) generates a Requirements Traceability report in
HTML format for the Simulink data dictionary specified by dictionaryFile.

rmi('projectreport') generates a Requirements Traceability report in HTML format
for the current Simulink Project. The master page of this report has HTTP links to
reports for each project item that has requirements traceability associations. For more
information, see “Create Requirements Traceability Report for Simulink Project”.

 rmi

1-199

rmi setup configures RMI for use with your MATLAB software and installs the
interface for use with the IBM® Rational® DOORS® software.

rmi register linktypename registers the custom link type specified by the function
linktypename. For more information, see “Custom Link Type Registration”.

rmi unregister linktypename removes the custom link type specified by the
function linktypename. For more information, see “Custom Link Type Registration”.

rmi linktypelist displays a list of the currently registered link types. The list
indicates whether each link type is built-in or custom, and provides the path to the
function used for its registration.

number_problems = rmi('checkdoc') checks validity of links to Simulink from
a requirements document in Microsoft® Word, Microsoft Excel®, or IBM Rational
DOORS. It prompts for the requirements document name, returns the total number of
problems detected, and opens an HTML report in the MATLAB Web browser. For more
information, see “Validate Requirements Links in a Requirements Document”.

number_problems = rmi('checkdoc', docName) checks validity of links to
Simulink from the requirements document specified by docName. It returns the total
number of problems detected and opens an HTML report in the MATLAB Web browser.
For more information, see “Validate Requirements Links in a Requirements Document”.

rmi('check', matlabFilePath) checks consistency of traceability links associated
with MATLAB code lines in the .m file matlabFilePath, and opens an HTML report in
the MATLAB Web browser.

rmi('check', dictionaryFile) checks consistency of traceability links associated
with the Simulink data dictionary dictionaryFile, and opens an HTML report in the
MATLAB Web browser.

rmi('doorssync', model) opens the DOORS synchronization settings dialog box,
where you can customize the synchronization settings and synchronize your model
with an open project in an IBM Rational DOORS database. See slrequirements for
information about synchronizing your model with DOORS at the MATLAB command
line.

rmi('setDoorsLabelTemplate', template) specifies a new custom
template for labels of requirements links to IBM Rational DOORS. The default
label template contains the section number and object heading for the DOORS

1 Functions — Alphabetical List

1-200

requirement link target. To revert the link label template back to the default, enter
rmi('setDoorsLabelTemplate', '') at the MATLAB command prompt.

template = rmi('getDoorsLabelTemplate') returns the currently specified
custom template for labels of requirements links to IBM Rational DOORS.

label = rmi('doorsLabel', moduleID, objectID) generates a label for the
requirements link to the IBM Rational DOORS object specified by objectID in the
DOORS module specified by moduleID, according to the current template.

totalModifiedLinks = rmi('updateDoorsLabels', model) updates all IBM
Rational DOORS requirements links labels in model according to the current template.

Examples

Requirements Links Management in Example Model

Get a requirement associated with a block in the slvnvdemo_fuelsys_htmreq model,
change its description, and save the requirement back to that block. Define a new
requirement link and add it to the existing requirements links in the block.

Get requirement link associated with the Airflow calculation block in the
slvnvdemo_fuelsys_htmreq example model.

slvnvdemo_fuelsys_htmreq;

blk_with_req = ['slvnvdemo_fuelsys_htmreq/fuel rate' 10 'controller/...

 Airflow calculation'];

reqts = rmi('get', blk_with_req);

Change the description of the requirement link.

reqts.description = 'Mass airflow estimation';

Save the changed requirement link description for the Airflow calculation block.

rmi('set', blk_with_req, reqts);

Create new requirement link to example document fuelsys_requirements2.htm.

new_req = rmi('createempty');

 rmi

1-201

new_req.doc = 'fuelsys_requirements2.htm';

new_req.description = 'A new requirement';

Add new requirement link to existing requirements links for the Airflow calculation
block.

rmi('cat', blk_with_req, new_req);

Requirements Traceability Report for Example Model

Create HTML report of requirements traceability data in example model.

Create an HTML requirements report for the slvnvdemo_fuelsys_htmreq example
model.

rmi('report', 'slvnvdemo_fuelsys_htmreq');

The MATLAB Web browser opens, showing the report.

Labels for Requirements Links to IBM Rational DOORS

Specify a new label template for links to requirements in DOORS, and update labels of
all DOORS requirements links in your model to fit the new template.

Specify a new label template for requirements links to IBM Rational DOORS so that new
links to DOORS objects are labeled with the corresponding module ID, object absolute
number, and the value of the ‘Backup’ attribute.

rmi('setDoorsLabelTemplate', '%m:%n [backup=%<Backup>]');

Update existing DOORS requirements link labels to match the new specified template
in your model example_model. When updating labels, DOORS must be running and all
linked modules must be accessible for reading.

rmi('updateDoorsLabels', example_model);

Input Arguments

model — Simulink or Stateflow model with which requirements can be associated
name | handle

1 Functions — Alphabetical List

1-202

Simulink or Stateflow model with which requirements can be associated, specified as a
string or handle.
Example: 'slvnvdemo_officereq'

Data Types: char

object — Model object with which requirements can be associated
name | handle

Model object with which requirements can be associated, specified as a string or handle.
Example: 'slvnvdemo_fuelsys_htmreq/fuel rate controller/Airflow
calculation'

Data Types: char

sig_builder — Signal Builder block containing signal group with requirements traceability
associations
name | handle

Signal Builder block containing signal group with requirements traceability
associations, specified as a string or handle.
Data Types: char

group_idx — Signal Builder group index
integer

Signal Builder group index, specified as a scalar.
Example: 2
Data Types: char

matlabFilePath — MATLAB code file with requirements traceability associations
path

MATLAB code file with requirements traceability associations, specified as the path to
the file.
Example:
Data Types: char

dictionaryFile — Simulink data dictionary with requirements traceability associations
string

 rmi

1-203

Simulink data dictionary with requirements traceability associations, specified as a
string containing the file name and, optionally, path of the dictionary.
Example:
Data Types: char

guidStr — Globally unique identifier for model object
string

Globally unique identifier for model object object, specified as a string.

Example: GIDa_59e165f5_19fe_41f7_abc1_39c010e46167

Data Types: char

index — Index number of requirement linked to model object
integer

Index number of requirement linked to model object, specified as an integer.

docName — Requirements document in external application
file name | path

Requirements document in external application, specified as a string that represents one
of the following:

• IBM Rational DOORS module ID.
• path to Microsoft Word requirements document.
• path to Microsoft Excel requirements document.

For more information, see “Validate Requirements Links in a Requirements Document”.

label — Label for links to requirements in IBM Rational DOORS
string
Example:
Data Types: char

template — Template label for links to requirements in IBM Rational DOORS
string

Template label for links to requirements in IBM Rational DOORS, specified as a string.

1 Functions — Alphabetical List

1-204

You can use the following format specifiers to include the associated DOORS information
in your requirements links labels:

%h Object heading
%t Object text
%p Module prefix
%n Object absolute number
%m Module ID
%P Project name
%M Module name
%U DOORS URL
%<ATTRIBUTE_NAME> Other DOORS attribute you specify

Example: '%m:%n [backup=%<Backup>]'

Data Types: char

moduleID — IBM Rational DOORS module
DOORS module ID

IBM Rational DOORS module, specified as the unique DOORS module ID.
Example:
Data Types: char

objectID — IBM Rational DOORS object
DOORS object ID

IBM Rational DOORS object in the DOORS module moduleID, specified as the locally
unique DOORS ID.
Example:
Data Types: char

Output Arguments

reqlinks — Requirement links data
struct

 rmi

1-205

Requirement links data, returned as a structure array with the following fields:

doc String identifying requirements document
id String defining location in requirements document. The first

character specifies the identifier type:

First
Character

Identifier Example

? Search text, the first
occurrence of which is
located in requirements
document

'?Requirement 1'

@ Named item, such as
bookmark in a Microsoft
Word file or an anchor in an
HTML file

'@my_req'

Page or item number '#21'

> Line number '>3156'

$ Worksheet range in a
spreadsheet

'$A2:C5'

linked Boolean value specifying whether the requirement link is accessible
for report generation and highlighting:
1 (default). Highlight model object and include requirement link in
reports.
0

description String describing the requirement
keywords Optional string supplementing description
reqsys String identifying the link type registration name; 'other' for

built-in link types

cmdStr — Command string used to navigate to model object
string

Command string used to navigate to model object object, returned as a string.

Example: rmiobjnavigate('slvnvdemo_fuelsys_officereq.slx',
'GIDa_59e165f5_19fe_41f7_abc1_39c010e46167');

1 Functions — Alphabetical List

1-206

titleStr — Textual description of model object with requirements links
string

Textual description of model object with requirements links, returned as a string.
Example: slvnvdemo_fuelsys_officereq/.../Airflow calculation/Pumping
Constant (Lookup2D)

guidStr — Globally unique identifier for model object
string

Globally unique identifier for model object object, returned as a string.

Example: GIDa_59e165f5_19fe_41f7_abc1_39c010e46167

dialog — Requirements dialog box for model object
handle

Requirements dialog box for model object object, returned as a handle to the dialog box.

number_problems — Total count of invalid links detected in external document
integer

Total count of invalid links detected in external document docName.

For more information, see “Validate Requirements Links in a Requirements Document”.

totalModifiedLinks — Total count of DOORS requirements links updated with new label
template
integer

Total count of DOORS requirements links updated with new label template.

More About
• “Requirements Management Interface Setup”
• “Maintenance of Requirements Links”

See Also
rmidata.default | rmidocrename | rmimap.map | rmiobjnavigate | rmipref |
rmitag | RptgenRMI.doorsAttribs | slrequirements

 rmidata.default

1-207

rmidata.default

Specify default storage location of requirements traceability data for new models

Syntax

rmidata.default(storage_setting)

Description

rmidata.default(storage_setting) specifies whether requirements traceability
data for new Simulink models is stored in the model file or in an external .req file. This
function does not affect models that already have saved requirements traceability data.

Input Arguments

storage_setting

String that specifies where requirements traceability data for a model is stored:

• 'internal' — Store requirements traceability data in the model file.
• 'external' — Store requirements traceability data in a separate file. The default

name for this file is model_name.req.

Examples

Specify to store requirements traceability data in the model file:

rmidata.default('internal');

Specify to store requirements traceability data in an external .req file:

rmidata.default('external);

1 Functions — Alphabetical List

1-208

Alternatives

To set the storage location from the Simulink Editor:

1 Select Analysis > Requirements > Settings.
2 Select the Storage tab.
3 Select one of the following options:

• Store internally (embedded in a model file)
• Store externally (in a separate *.req file)

More About
• “Specify Storage for Requirements Links”
• “Requirements Link Storage”

See Also
rmi | rmidata.export | rmimap.map | rmidata.save

 rmidata.export

1-209

rmidata.export
Move requirements traceability data to external .req file

Syntax
[total_linked,total_links] = rmidata.export

[total_linked,total_links] = rmidata.export(model)

Description
[total_linked,total_links] = rmidata.export moves requirements
traceability data associated with the current Simulink model to an external file named
model_name.req. rmidata.export saves the file in the same folder as the model.
rmidata.export deletes the requirements traceability data stored in the model and
saves the modified model.

[total_linked,total_links] = rmidata.export(model) moves requirements
traceability data associated with model to an external file named model_name.req.
rmidata.export saves the file in the same folder as model. rmidata.export deletes
the requirements traceability data stored in the model and saves the modified model.

Input Arguments

model

Name or handle of a Simulink model

Output Arguments

total_linked

Integer indicating the number of objects in the model that have linked requirements

total_links

Integer indicating the total number of requirements links in the model

1 Functions — Alphabetical List

1-210

Examples

Move the requirements traceability data from the slvnvdemo_fuelsys_officereq
model to an external file:

rmidata.export('slvnvdemo_fuelsys_officereq');

More About
• “Specify Storage for Requirements Links”
• “Requirements Link Storage”

See Also
rmi | rmidata.save | rmidata.default | rmimap.map

 rmimap.map

1-211

rmimap.map
Associate externally stored requirements traceability data with model

Syntax

rmimap.map(model,reqts_file)

rmimap.map(model,'undo')

rmimap.map(model,'clear')

Description

rmimap.map(model,reqts_file) associates the requirements traceability data from
reqts_file with the Simulink model model.

rmimap.map(model,'undo') removes from the .req file associated with model the
requirements traceability data that was most recently saved in the .req file.

rmimap.map(model,'clear') removes from the .req file associated with model all
requirements traceability data.

Input Arguments

model

Name, handle, or full path for a Simulink model

reqts_file

Full path to the .req file that contains requirements traceability data for the model

Alternatives

To load a file that contains requirements traceability data for a model:

1 Open the model.

1 Functions — Alphabetical List

1-212

2 Select Analysis > Requirements > Load Links.

Note: The Load Links menu item appears only when your model is configured to
store requirements data externally. To specify external storage of requirements data
for your model, in the Requirements Settings dialog box under Storage > Default
storage location for requirements links data, select Store externally (in a
separate *.req file).

3 Browse to the .req file that contains the requirements links.
4 Click OK.

Examples

Associate an external requirements traceability data file with a Simulink model. After
associating the information with the model, view the objects with linked requirements by
highlighting the model.

open_system('slvnvdemo_powerwindowController');

reqFile = fullfile(matlabroot, 'toolbox', 'slvnv', ...

 'rmidemos', 'powerwin_reqs', ...

 'slvnvdemo_powerwindowRequirements.req');

rmimap.map('slvnvdemo_powerwindowController', reqFile);

rmi('highlightModel', 'slvnvdemo_powerwindowController');

To clear the requirements you just associated with that model, run this rmimap.map
command:

rmimap.map('slvnvdemo_powerwindowController','clear');

More About
• “Specify Storage for Requirements Links”
• “Requirements Link Storage”

See Also
rmi | rmidata.save | rmidata.default | rmidata.export

 rmidata.save

1-213

rmidata.save
Save requirements traceability data in external .req file

Syntax

rmidata.save(model)

Description

rmidata.save(model) saves requirements traceability data for a model in an external
.req file. The model must be configured to store requirements traceability data
externally. This function is equivalent to Analysis > Requirements > Save Links in
the Simulink Editor.

Examples

Create New Requirement Link and Save Externally

Add a requirement link to an existing example model, and save the model requirements
traceability data in an external file.

Open the example model, slvnvdemo_powerwindowController.

open_system('slvnvdemo_powerwindowController');

Specify that the model store requirements data externally.

rmidata.default('external');

Create a new requirements link structure.

newReqLink = rmi('createEmpty');

newReqLink.description = 'newReqLink';

Specify the requirements document that you want to link to from the model. In this case,
an example requirements document is provided.

1 Functions — Alphabetical List

1-214

newReqLink.doc = [matlabroot '\toolbox\slvnv\rmidemos\' ...

 'powerwin_reqs\PowerWindowSpecification.docx'];

Specify the text of the requirement within the document to which you want to link.

newReqLink.id = '?passenger input consists of a vector' ...

 'with three elements';

Specify that the new requirements link that you created be attached to the Mux4 block of
the slvnvdemo_powerwindowController example model.

rmi('set', 'slvnvdemo_powerwindowController/Mux4', newReqLink);

Save the new requirement link that you just created in an external .req file associated
with the model.

rmidata.save('slvnvdemo_powerwindowController');

This function is equivalent to the Simulink Editor option Analysis > Requirements >
Save Links.

To highlight the Mux4 block, turn on requirements highlighting for the
slvnvdemo_powerwindowController example model.

rmi('highlightModel', 'slvnvdemo_powerwindowController');

You can test your requirements link by right-clicking the Mux4 block. In the context
menu, select Requirements > 1. “newReqLink”.

Close the example model.

close_system('slvnvdemo_powerwindowController', 0);

You are not prompted to save unsaved changes because you saved the requirements link
data outside the model file. The model file remains unchanged.

• “Managing Requirements Without Modifying Simulink Model Files”

Input Arguments

model — Name or handle of model with requirements links
string | handle

 rmidata.save

1-215

Name of model with requirements links, specified as a string, or handle to model with
requirements links. The model must be loaded into memory and configured to store
requirements traceability data externally.

If you have a new model with no existing requirements links, configure it for external
storage as described in “Specify Storage for Requirements Links”. You can also use the
rmidata.default command to specify storage settings.

If you have an existing model with internally stored requirements traceability
data, convert that data to external storage as described in “Move Internally Stored
Requirements Links to External Storage”. You can also use the rmidata.export
command to convert existing requirements traceability data to external storage.
Example: 'slvnvdemo_powerwindowController'

Example: get_param(gcs,'Handle')

More About
• “Requirements Link Storage”

See Also
rmidata.default | rmidata.export | rmimap.map

1 Functions — Alphabetical List

1-216

rmidocrename
Update model requirements document paths and file names

Syntax

rmidocrename(model_handle, old_path, new_path)

rmidocrename(model_name, old_path, new_path)

Description

rmidocrename(model_handle, old_path, new_path) collectively updates the links
from a Simulink model to requirements files whose names or locations have changed.
model_handle is a handle to the model that contains links to the files that you have
moved or renamed. old_path is a string that contains the existing full or partial file or
path name. new_path is a string with the new full or partial file or path name.

rmidocrename(model_name, old_path, new_path) updates the links to
requirements files associated with model_name. You can pass rmidocrename a model
handle or a model file name.

When using the rmidocrename function, make sure to enter specific strings for the old
document name fragments so that you do not inadvertently modify other links.

Examples

For the current Simulink model, update all links to requirements files that contain the
string 'project_0220', replacing them with 'project_0221':
rmidocrename(gcs, 'project_0220', 'project_0221')

Processed 6 objects with requirements, 5 out of 13 links were modified.

Alternatives

To update the requirements links one at a time, for each model object that has a link:

 rmidocrename

1-217

1 For each object with requirements, open the Requirements Traceability Link Editor
by right-clicking and selecting Requirements Traceability > Open Link Editor.

2 Edit the Document field for each requirement that points to a moved or renamed
document.

3 Click Apply to save the changes.

See Also
rmi

1 Functions — Alphabetical List

1-218

slrequirements
Synchronize model with DOORS surrogate module

Syntax
slrequirements('doorssync', model_name)

slrequirements('doorssync', model_name, settings)

current_settings = slrequirements('doorssync', model_name, settings)

default_settings = slrequirements('doorssync', model_name, [])

default_settings = slrequirements('doorssync', [])

Description
slrequirements('doorssync', model_name) opens the DOORS synchronization
settings dialog box. Select the options for synchronizing model_name with an IBM
Rational DOORS surrogate module and click Synchronize.

Synchronizing a Simulink model with a DOORS surrogate module is a user-initiated
process that creates or updates a surrogate module in a DOORS database. A surrogate
module is a DOORS formal module that is a representation of a Simulink model
hierarchy. When you first synchronize a model, the DOORS software creates a surrogate
module. Depending on your synchronization settings, the surrogate module contains a
representation of the model.

slrequirements('doorssync', model_name, settings) non-interactively
synchronizes model_name with a DOORS surrogate module using the options that
settings specifies.

current_settings = slrequirements('doorssync', model_name, settings)

returns the current settings for model_name, but does not synchronize the model with
the DOORS surrogate module.

default_settings = slrequirements('doorssync', model_name, []) returns
the default settings for synchronization, but does not synchronize the model with the
DOORS surrogate module.

default_settings = slrequirements('doorssync', []) returns a settings
object with the default values.

 slrequirements

1-219

Input Arguments

model_name

Name or handle of a Simulink model

settings

Structure with the following fields.

Field Description

surrogatePath Path to a DOORS project in the form '/PROJECT/
FOLDER/MODULE'.)

The default, './$ModelName$', resolves to the given
model name under the current DOORS project.

saveModel Saves the model after synchronization.

Default: 1
saveSurrogate Saves the modified surrogate module.

Default: 1
slToDoors Copies links from Simulink to the surrogate module.

Default: 0
doorsToSl Copies links from the surrogate module to Simulink.

If both doorsToSl and slToDoors are set to 1, an error
occurs.

Default: 0
purgeSimulink Removes unmatched links in Simulink (ignored if

doorsToSl is set to 0).

slrequirements ignores purgeSimulink if doorsToSl
is set to 0.

Default: 0

1 Functions — Alphabetical List

1-220

Field Description

purgeDoors Removes unmatched links in the surrogate module
(ignored if slToDoors is set to 0).

Default: 0
detailLevel Specifies which objects with no links to DOORS to include

in the surrogate module.

Valid values are 1 through 6. 1 includes only objects with
requirements, for fast synchronization. 6 includes all
model objects, for complete model representation in the
surrogate.

Default: 1

Output Arguments

current_settings

The current values of the synchronization settings

default_settings

The default values of the synchronization settings

Examples

Before running this example:

1 Start the DOORS software.
2 Create a new DOORS project or open an existing DOORS project.

After you complete the preceding steps, open the slvnvdemo_fuelsys_officereq
model, specify to copy the links from the model to DOORS, and synchronize the model to
create the surrogate module:

slvnvdemo_fuelsys_officereq;

settings = slrequirements('doorssync','slvnvdemo_fuelsys_officereq', ...

 slrequirements

1-221

 'settings');

settings.slToDoors = 1;

setting.purgeDoors = 1;

slrequirements('doorssync','slvnvdemo_fuelsys_officereq', settings);

Alternatives

Instead of using slrequirements, you can synchronize your Simulink model with a
DOORS surrogate module from the Simulink Editor:

1 Open the model.
2 Select Analysis > Requirements > Synchronize with DOORS.
3 In the DOORS synchronization settings dialog box, select the desired

synchronization settings.
4 Click Synchronize.

More About
• “Synchronize a Simulink Model to Create a Surrogate Module”
• “Resynchronize DOORS Surrogate Module to Reflect Model Changes”

See Also
rmi

1 Functions — Alphabetical List

1-222

rmi.objinfo
Return navigation information for model object

Syntax
[navCmd, dispString] = rmi.objinfo(obj)

Description
[navCmd, dispString] = rmi.objinfo(obj) returns navigation information for
the Simulink model object obj.

Input Arguments

obj

Name or handle of a Simulink or Stateflow object.

Default:

Output Arguments

navCmd

String that contains the MATLAB command that navigates to the model object obj. Pass
this command to the MATLAB Automation server to highlight obj.

dispString

String that contains the name and path to the model object obj.

Examples
Open the slvnvdemo_fuelsys_officereq example model, get the unique identifier for
the MAP Sensor block, and navigate to that block using the rmiobjnavigate function:

 rmi.objinfo

1-223

slvnvdemo_fuelsys_officereq; % Open example model

gcb = ...

 'slvnvdemo_fuelsys_officereq/MAP sensor'; % Make current block

[navCmdString, objPath] = rmi.objinfo(gcb); % Get rmiobjnavigate command

 % and path

See Also
rmi | rmiobjnavigate

1 Functions — Alphabetical List

1-224

rmiobjnavigate
Navigate to model objects using unique Requirements Management Interface identifiers

Syntax

rmiobjnavigate(modelPath, guId)

rmiobjnavigate(modelPath, guId, grpNum)

Description

rmiobjnavigate(modelPath, guId) navigates to and highlights the specified object
in a Simulink model.

rmiobjnavigate(modelPath, guId, grpNum) navigates to the signal group number
grpNum of a Signal Builder block identified by guId in the model modelPath.

Input Arguments

modelPath

A full path to a Simulink model file, or a Simulink model file name that can be resolved
on the MATLAB path.

guId

A unique string that the RMI uses to identify a Simulink or Stateflow object.

grpNum

Integer indicating a signal group number in a Signal Builder block

Examples

Open the slvnvdemo_fuelsys_officereq example model, get the unique identifier for
the MAP Sensor block:

 rmiobjnavigate

1-225

slvnvdemo_fuelsys_officereq; % Open example model

gcb = ...

 'slvnvdemo_fuelsys_officereq/MAP sensor'; % Make current block

navCmdString = rmi.objinfo(gcb) % Get rmoobjnavigate command

 % with model name and object ID

rmi.objinfo returns the following value for navCmdString:
navCmdString =

rmiobjnavigate('slvnvdemo_fuelsys_officereq.mdl', ...

 'GIDa_9fc2c968_6068_49c6_968d_b08e363248b9');

Navigate to that block using the rmiobjnavigate command that rmi.objinfo
returned:
eval(navCmdString); % Execute rmiobjnavigate command

More About
• “Use the rmiobjnavigate Function”

See Also
rmi | rmi.objinfo

1 Functions — Alphabetical List

1-226

rmipref
Get or set RMI preferences stored in prefdir

Syntax

rmipref

currentVal = rmipref(prefName)

previousVal = rmipref(Name,Value)

Description

rmipref returns list of Name,Value pairs corresponding to Requirements Management
Interface (RMI) preference names and accepted values for each preference.

currentVal = rmipref(prefName) returns the current value of the preference
specified by prefName.

previousVal = rmipref(Name,Value) sets a new value for the RMI preference
specified by Name, and returns the previous value of that RMI preference.

Examples

References to Simulink Model in External Requirements Documents

Choose the type of reference that the RMI uses when it creates links to your model from
external requirements documents. The reference to your model can be either the model
file name or the full absolute path to the model file.

The value of the 'ModelPathReference' preference determines how the RMI stores
references to your model in external requirements documents. To view the current value
of this preference, enter the following code at the MATLAB command prompt.

currentVal = rmipref('ModelPathReference')

 rmipref

1-227

The default value of the 'ModelPathReference' preference is 'none'.

currentVal =

none

This default value specifies that the RMI uses only the model file name in references to
your model that it creates in external requirements documents.

Automatic Application of User Tags to Selection-Based Requirements Links

Configure the RMI to automatically apply a specified list of user tag keywords to new
selection-based requirements links that you create.

Specify that the user tags design and reqts apply to new selection-based requirements
links that you create.

previousVal = rmipref('SelectionLinkTag','design,reqts')

When you specify a new value for an RMI preference, rmipref returns the previous
value of that RMI preference. In this case, previousVal is an empty string, the default
value of the 'SelectionLinkTag' preference.

previousVal =

 ''

View the currently specified value for the 'SelectionLinkTag' preference.

currentVal = rmipref('SelectionLinkTag')

The function returns the currently specified comma-separated list of user tags.

currentVal =

design,reqts

These user tags apply to all new selection-based requirements links that you create.

External Storage of Requirements Traceability Data

Configure the RMI to store requirements links data in a separate .req file, instead of
embedded in the model file.

1 Functions — Alphabetical List

1-228

Note: If you have existing requirements links for your model that are stored internally,
you need to move these links into an external .req file before you change the
storage settings for your requirements traceability data. See “Move Internally Stored
Requirements Links to External Storage” for more information.

If you would like to store requirements traceability data in a separate .req file, set the
'StoreDataExternally' preference to 1.

previousVal = rmipref('StoreDataExternally',1)

When you specify a new value for an RMI preference, rmipref returns the previous
value of that RMI preference. By default, the RMI stores requirements links data
internally with the model, so the previous value of this preference was 0.

previousVal =

 0

After you set the 'StoreDataExternally' preference to 1, your requirements links are
stored externally, in a separate .req file.

currentVal = rmipref('StoreDataExternally')

currentVal =

 1

Input Arguments

prefName — RMI preference name
'BiDirectionalLinking' | 'FilterRequireTags' | 'CustomSettings' | ...

RMI preference name, specified as the corresponding Name string listed in “Name-Value
Pair Arguments” on page 1-228.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' ').

 rmipref

1-229

Example: 'BiDirectionalLinking',true enables bidirectional linking for your
model, so that when you create a selection-based link to a requirements document, the
RMI creates a corresponding link to your model from the requirements document.

'BiDirectionalLinking' — Bidirectional selection linking preference
false (default) | true

Bidirectional selection linking preference, specified as a logical value.

This preference specifies whether to simultaneously create return link from target
to source when creating link from source to target. This setting applies only for
requirements document types that support selection-based linking.
Data Types: logical

'DocumentPathReference' — Preference for path format of links to requirements
documents from model
'modelRelative' (default) | 'absolute' | 'pwdRelative' | 'none'

Preference for path format of links to requirements documents from model, specified as
one of the following strings.

String Document reference contains...

'absolute' full absolute path to requirements
document.

'pwdRelative' path relative to MATLAB current folder.
'modelRelative' path relative to model file.
'none' document file name only.

For more information, see “Document Path Storage”.
Data Types: char

'ModelPathReference' — Preference for path format in links to model from requirements
documents
'none' (default) | 'absolute'

Preference for path format in links to model from requirements documents, specified as
one of the following strings.

1 Functions — Alphabetical List

1-230

String Model reference contains...

'absolute' full absolute path to model.
'none' model file name only.

Data Types: char

'LinkIconFilePath' — Preference to use custom image file as requirements link icon
empty string (default) | full image file path

Preference to use custom image file as requirements link icon, specified as full path
to icon or small image file. This image will be used for requirements links inserted in
external documents.
Data Types: char

'FilterEnable' — Preference to enable filtering by user tag keywords
false (default) | true

Preference to enable filtering by user tag keywords, specified as a logical value. When
you filter by user tag keywords, you can include or exclude subsets of requirements links
in highlighting or reports. You can specify user tag keywords for requirements links
filtering in the 'FilterRequireTags' and 'FilterExcludeTags' preferences. For
more information about requirements filtering, see “Filter Requirements with User
Tags”.
Data Types: logical

'FilterRequireTags' — Preference for user tag keywords for requirements links
empty string (default) | comma-separated list of user tag keywords

Preference for user tag keywords for requirements links, specified as a comma-separated
list of words or phrases in a string. These user tags apply to all new requirements links
you create. Requirements links with these user tags are included in model highlighting
and reports. For more information about requirements filtering, see “Filter Requirements
with User Tags”.
Data Types: char

'FilterExcludeTags' — Preference to exclude certain requirements links from model
highlighting and reports
empty string (default) | comma-separated list of user tag keywords

 rmipref

1-231

Preference to exclude certain requirements links from model highlighting and reports,
specified as a comma-separated list of user tag keywords. Requirements links with these
user tags are excluded from model highlighting and reports. For more information about
requirements filtering, see “Filter Requirements with User Tags”.
Data Types: char

'FilterMenusByTags' — Preference to disable labels of requirements links with designated
user tags
false (default) | true

Preference to disable labels of requirements links with designated user tags, specified
as a logical value. When set to true, if a requirement link has a user tag designated
in 'FilterExcludeTags' or 'FilterRequireTags', that requirements link will be
disabled in the Requirements context menu. For more information about requirements
filtering, see “Filter Requirements with User Tags”.
Data Types: logical

'FilterConsistencyChecking' — Preference to filter Model Advisor requirements
consistency checks with designated user tags
false (default) | true

Preference to filter Model Advisor requirements consistency checks with designated
user tags, specified as a logical value. When set to true, Model Advisor requirements
consistency checks include requirements links with user tags designated in
'FilterRequireTags' and excludes requirements links with user tags designated in
'FilterExcludeTags'. For more information about requirements filtering, see “Filter
Requirements with User Tags”.
Data Types: logical

'KeepSurrogateLinks' — Preference to keep DOORS surrogate links when deleting all
requirements links
empty (default) | false | true

Preference to keep DOORS surrogate links when deleting all requirements links,
specified as a logical value. When set to true, selecting Requirements > Delete All
Links deletes all requirements links including DOORS surrogate module requirements
links. When not set to true or false, selecting Requirements > Delete All Links
opens a dialog box with a choice to keep or delete DOORS surrogate links.
Data Types: logical

1 Functions — Alphabetical List

1-232

'ReportFollowLibraryLinks' — Preference to include requirements links in referenced
libraries in generated report
false (default) | true

Preference to include requirements links in referenced libraries in generated report,
specified as a logical value. When set to true, generated requirements reports include
requirements links in referenced libraries.
Data Types: logical

'ReportHighlightSnapshots' — Preference to include highlighting in model snapshots in
generated report
true (default) | false

Preference to include highlighting in model snapshots in generated report, specified as
a logical value. When set to true, snapshots of model objects in generated requirements
reports include highlighting of model objects with requirements links.
Data Types: logical

'ReportNoLinkItems' — Preference to include model objects with no requirements links in
generated requirements reports
false (default) | true

Preference to include model objects with no requirements links in generated
requirements reports, specified as a logical value. When set to true, generated
requirements reports include lists of model objects that have no requirements links.
Data Types: logical

'ReportUseDocIndex' — Preference to include short document ID instead of full path to
document in generated requirements reports
false (default) | true

Preference to include short document ID instead of full path to document in generated
requirements reports, specified as a logical value. When set to true, generated
requirements reports include short document IDs, when specified, instead of full paths to
requirements documents.
Data Types: logical

'ReportIncludeTags' — Preference to list user tags for requirements links in generated
reports
false (default) | true

 rmipref

1-233

Preference to list user tags for requirements links in generated reports, specified as
a logical value. When set to true, generated requirements reports include user tags
specified for each requirement link. For more information about requirements filtering,
see “Filter Requirements with User Tags”.
Data Types: logical

'ReportDocDetails' — Preference to include extra detail from requirements documents in
generated reports
false (default) | true

Preference to include extra detail from requirements documents in generated reports,
specified as a logical value. When set to true, generated requirements reports load
linked requirements documents to include additional information about linked
requirements. This preference applies to Microsoft Word, Microsoft Excel, and IBM
Rational DOORS requirements documents only.
Data Types: logical

'ReportLinkToObjects' — Preference to include links to model objects in generated
requirements reports
false (default) | true

Preference to include links to model objects in generated requirements reports, specified
as a logical value. When set to true, generated requirements reports include links to
model objects. These links work only if the MATLAB internal HTTP server is active.
Data Types: logical

'SelectionLinkWord' — Preference to include Microsoft Word selection link option in
Requirements context menu
true (default) | false

Preference to include Microsoft Word selection link option in Requirements context
menu, specified as a logical value.
Data Types: logical

'SelectionLinkExcel' — Preference to include Microsoft Excel selection link option in
Requirements context menu
true (default) | false

Preference to include Microsoft Excel selection link option in Requirements context
menu, specified as a logical value.

1 Functions — Alphabetical List

1-234

Data Types: logical

'SelectionLinkDoors' — Preference to include IBM Rational DOORS selection link option
in Requirements context menu
true (default) | false

Preference to include IBM Rational DOORS selection link option in Requirements
context menu, specified as a logical value.
Data Types: logical

'SelectionLinkTag' — Preference for user tags to apply to new selection-based
requirements links
empty string (default) | comma-separated list of user tag keywords

Preference for user tags to apply to new selection-based requirements links, specified as
a comma-separated list of words or phrases in a string. These user tags automatically
apply to new selection-based requirements links that you create. For more information
about requirements filtering, see “Filter Requirements with User Tags”.
Data Types: char

'StoreDataExternally' — Preference to store requirements links data in external .req
file
false (default) | true

Preference to store requirements links data in external .req file, specified as a logical
value. This setting applies to all new models and to existing models that do not yet have
requirements links. For more information about storage of requirements links data, see
“Requirements Link Storage” and “Specify Storage for Requirements Links”.
Data Types: logical

'UseActiveXButtons' — Preference to use legacy ActiveX® buttons in Microsoft Office
requirements documents
false (default) | true

Preference to use legacy ActiveX buttons in Microsoft Office requirements documents,
specified as a logical value. The default value of this preference is false; requirements
links are URL-based by default. ActiveX requirements navigation is supported for
backward compatibility. For more information on legacy ActiveX navigation, see
“Navigate with Objects Created Using ActiveX in Microsoft Office 2007 and 2010”.

 rmipref

1-235

Data Types: logical

'CustomSettings' — Preference for storing custom settings
inUse: 0 (default) | structure array of custom field names and settings

Preference for storing custom settings, specified as a structure array. Each field of the
structure array corresponds to the name of your custom preference, and each associated
value corresponds to the value of that custom preference.
Data Types: struct

Output Arguments

currentVal — Current value of the RMI preference specified by prefName
true | false | 'absolute' | 'none' | ...

Current value of the RMI preference specified by prefName. RMI preference names and
their associated possible values are listed in “Name-Value Pair Arguments” on page
1-228.

previousVal — Previous value of the RMI preference specified by prefName
true | false | 'absolute' | 'none' | ...

Previous value of the RMI preference specified by prefName. RMI preference names
and their associated possible values are listed in “Name-Value Pair Arguments” on page
1-228.

More About
• “Requirements Settings”

See Also
rmi

1 Functions — Alphabetical List

1-236

rmiref.insertRefs
Insert links to models into requirements documents

Syntax

[total_links, total_matches, total_inserted] = rmiref.insertRefs(

model_name, doc_type)

Description

[total_links, total_matches, total_inserted] = rmiref.insertRefs(

model_name, doc_type) inserts ActiveX controls into the open, active requirements
document of type doc_type. These controls correspond to links from model_name to the
document. With these controls, you can navigate from the requirements document to the
model.

Input Arguments

model_name

Name or handle of a Simulink model

doc_type

A string that indicates the requirements document type:

• 'word'

• 'excel'

Examples

Remove the links in an example requirements document, and then reinsert them:

1 Open the example model:

 rmiref.insertRefs

1-237

slvnvdemo_fuelsys_officereq

2 Open the example requirements document:
open([matlabroot strcat('/toolbox/slvnv/rmidemos/fuelsys_req_docs/',...

 'slvnvdemo_FuelSys_DesignDescription.docx')])

3 Remove the links from the requirements document:

rmiref.removeRefs('word')

4 Enter y to confirm the removal.
5 Reinsert the links from the requirements document to the model:

[total_links, total_matches, total_inserted] = ...

 rmiref.insertRefs(gcs, 'word')

See Also
rmiref.removeRefs

1 Functions — Alphabetical List

1-238

rmiref.removeRefs
Remove links to models from requirements documents

Syntax

rmiref.removeRefs(doc_type)

Description

rmiref.removeRefs(doc_type) removes all links to models from the open, active
requirements document of type doc_type.

Input Arguments

doc_type

A string that indicates the requirements document type:

• 'word'

• 'excel'

• 'doors'

Examples

Remove the links in this example requirements document:
open([matlabroot strcat('/toolbox/slvnv/rmidemos/fuelsys_req_docs/', ...

 'slvnvdemo_FuelSys_DesignDescription.docx')])

rmiref.removeRefs('word')

See Also
rmiref.insertRefs

 rmitag

1-239

rmitag

Manage user tags for requirements links

Syntax

rmitag(model, 'list')

rmitag(model, 'add', tag)

rmitag(model, 'add', tag, doc_pattern)

rmitag(model, 'delete', tag)

rmitag(model, 'delete', tag, doc_pattern)

rmitag(model, 'replace', tag, new_tag)

rmitag(model, 'replace', tag, new_tag, doc_pattern)

rmitag(model, 'clear', tag)

rmitag(model, 'clear', tag, doc_pattern)

Description

rmitag(model, 'list') lists all user tags in model.

rmitag(model, 'add', tag) adds a string tag as a user tag for all requirements
links in model.

rmitag(model, 'add', tag, doc_pattern) adds tag as a user tag for all links
in model, where the full or partial document name matches the regular expression
doc_pattern.

rmitag(model, 'delete', tag) removes the user tag, tag from all requirements
links in model.

rmitag(model, 'delete', tag, doc_pattern) removes the user tag, tag, from
all requirements links in model, where the full or partial document name matches
doc_pattern.

rmitag(model, 'replace', tag, new_tag) replaces tag with new_tag for all
requirements links in model.

1 Functions — Alphabetical List

1-240

rmitag(model, 'replace', tag, new_tag, doc_pattern) replaces tag with
new_tag for links in model, where the full or partial document name matches the
regular expression doc_pattern.

rmitag(model, 'clear', tag) deletes all requirements links that have the user tag,
tag.

rmitag(model, 'clear', tag, doc_pattern) deletes all requirements links
that have the user tag, tag, and link to the full or partial document name specified in
doc_pattern.

Input Arguments

model

Name of or handle to Simulink or Stateflow model with which requirements are
associated.

tag

String specifying user tag for requirements links.

doc_pattern

Regular expression to match in the linked requirements document name. Not case
sensitive.

new_tag

String that indicates the name of a user tag for a requirements link. Use this argument
when replacing an existing user tag with a new user tag.

Examples

Open the slvnvdemo_fuelsys_officereq example model, and add the user tag
tmptag to all objects with requirements links:

open_system('slvnvdemo_fuelsys_officereq');

rmitag(gcs, 'add', 'tmptag');

 rmitag

1-241

Remove the user tag test from all requirements links:

open_system('slvnvdemo_fuelsys_officereq');

rmitag(gcs, 'delete', 'test');

Delete all requirements links that have the user tag design:

open_system('slvnvdemo_fuelsys_officereq');

rmitag(gcs, 'clear', 'design');

Change all instances of the user tag tmptag to safety requirement, where the
document filename extension is .docx:

open_system('slvnvdemo_fuelsys_officereq');

rmitag(gcs, 'replace', 'tmptag', ...

 'safety requirements', '\.docx');

More About
• “User Tags and Requirements Filtering”

See Also
rmi | rmidocrename

1 Functions — Alphabetical List

1-242

RptgenRMI.doorsAttribs

IBM Rational DOORS attributes in requirements report

Syntax

RptgenRMI.doorsAttribs (action,attribute)

Description

RptgenRMI.doorsAttribs (action,attribute) specifies which DOORS object
attributes to include in the generated requirements report.

Input Arguments

action

String that specifies the desired action for what content to include from a DOORS record
in the generated requirements report. Valid values for this argument are as follows.

Value Description

'default' Restore the default settings for the DOORS system attributes
to include in the report.

The default configuration includes the Object Heading and
Object Text attributes, and all other attributes, except:

• Created Thru
• System attributes with empty string values
• System attributes that are false

'show' Display the current settings for the DOORS attributes to
include in the report.

'type' Include or omit groups of DOORS attributes from the report.

 RptgenRMI.doorsAttribs

1-243

Value Description

If you specify 'type' for the first argument, valid values for
the second argument are:

• 'all' — Include all DOORS attributes in the report.
• 'user' — Include only user-defined DOORS in the

report.
• 'none' — Omit all DOORS attributes from the report.

'remove' Omit specified DOORS attributes from the report.
'all' Include specified DOORS attributes in the report, even if

that attribute is currently excluded as part of a group.
'nonempty' Enable or disable the empty attribute filter:

• Enter RptgenRMI.doorsAttribs('nonempty',
'off') to omit all empty attributes from the report.

• Enter RptgenRMI.doorsAttribs('nonempty', 'on')
to include empty user-defined attributes. The report never
includes empty system attributes.

Default:

attribute

String that qualifies the action argument.

Output Arguments

result

• True if RptgenRMI.doorsAttribs modifies the current settings.
• For RptgenRMI.doorsAttribs('show'), this argument is a cell array of strings

that indicate which DOORS attributes to include in the requirements report, for
example:

>> RptgenRMI.doorsAttribs('show')

ans =

1 Functions — Alphabetical List

1-244

 'Object Heading'

 'Object Text'

 '$AllAttributes$'

 '$NonEmpty$'

 '-Created Thru'

• The Object Heading and Object Text attributes are included by default.
• '$AllAttributes$' specifies to include all attributes associated with each

DOORS object.
• '$Nonempty$' specifies to exclude all empty attributes.
• '-Created Thru' specifies to exclude the Created Thru attribute for each

DOORS object.

Examples

Limit the DOORS attributes in the requirements report to user-defined attributes:

RptgenRMI.doorsAttribs('type', 'user');

Omit the content of the Last Modified By attribute from the requirements report:

RptgenRMI.doorsAttribs('remove', 'Last Modified By');

Include the content of the Last Modified On attribute in the requirements report, even
if system attributes are not included as a group:

RptgenRMI.doorsAttribs('add', 'Last Modified On');

Include empty system attributes in the requirements report:

RptgenRMI.doorsAttribs('nonempty', 'off');

Omit the Object Heading attribute from the requirements report. Use this option when
the link label is always the same as the Object Heading for the target DOORS object
and you do not want duplicate information in the requirements report:

RptgenRMI.doorsAttribs('remove', 'Object Heading');

See Also
rmi

 run

1-245

run

Class: Advisor.Application
Package: Advisor

Run Model Advisor analysis on model components

Syntax

run(app)

Description

run(app) runs a Model Advisor analysis, as specified by the Application object.

Examples

This example shows how to create an Application object, set root analysis to
RootModel, and run a Model Advisor analysis.

% Create an Application object

app = Advisor.Manager.createApplication();

% Set the Application object root analysis

setAnalysisRoot(app,'Root',RootModel);

% Run Model Advisor analysis

run(app);

Input Arguments

app — Application
Advisor.Application object

Advisor.Application object, created by Advisor.Manager.createApplication

1 Functions — Alphabetical List

1-246

See Also
Advisor.Manager.createApplication | Advisor.Application.setAnalysisRoot

Introduced in R2015b

 selectCheckInstances

1-247

selectCheckInstances
Class: Advisor.Application
Package: Advisor

Select check instances to use in Model Advisor analysis

Syntax

selectCheckInstances(app)

selectCheckInstances(app,Name,Value)

Description

You can select check instances to use in a Model Advisor analysis. A check instance is
an instantiation of a ModelAdvisor.Check object in the Model Advisor configuration.
When you change the Model Advisor configuration, the check instance ID might change.
To obtain the check instance ID, use the getCheckInstanceIDs method.

selectCheckInstances(app) selects all check instances to use for Model Advisor
analysis.

selectCheckInstances(app,Name,Value) selects check instances specified by
Name,Value pair arguments to use for Model Advisor analysis.

Input Arguments

app — Application
Advisor.Application object

Advisor.Application object, created by Advisor.Manager.createApplication

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Functions — Alphabetical List

1-248

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'IDs' — Check instance IDs
cell array

Select check instances to use in Model Advisor analysis, as specified as a cell array of IDs
Data Types: cell

Examples

Select All Check Instances to Use in Model Advisor Analysis

This example shows how to set the root model, create an Application object, set root
analysis, and select all check instances for Model Advisor analysis.

% Set root model to sldemo_mdlref_basic model

RootModel='sldemo_mdlref_basic';

% Create an Application object

app = Advisor.Manager.createApplication();

% Set the Application object root analysis

setAnalysisRoot(app,'Root',RootModel);

% Select all checks

selectCheckInstances(app);

Select Check Instance for Model Advisor Analysis Using Instance ID

This example shows how to set the root model, create an Application object, set root
analysis, and select a check using instance ID.

% Set root model to sldemo_mdlref_basic model

RootModel='sldemo_mdlref_basic';

% Create an Application object

app = Advisor.Manager.createApplication();

% Set the Application object root analysis

setAnalysisRoot(app,'Root',RootModel);

 selectCheckInstances

1-249

% Select "Identify unconnected lines, input ports, and output

% ports" check using check instance ID

instanceID = getCheckInstanceIDs(app,'mathworks.design.UnconnectedLinesPorts');

checkinstanceID = instanceID(1);

selectCheckInstances(app,'IDs',checkinstanceID);

See Also
Advisor.Manager.createApplication | Advisor.Application.setAnalysisRoot |
Advisor.Application.getCheckInstanceIDs | Advisor.Application.deselectCheckInstances

Introduced in R2015b

1 Functions — Alphabetical List

1-250

selectComponents
Class: Advisor.Application
Package: Advisor

Select model components for Model Advisor analysis

Syntax

selectComponents(app)

selectComponents(app,Name,Value)

Description

You can select model components for Model Advisor analysis. A model component
is a model in the system hierarchy. Models that the root model references and that
Advisor.Application.setAnalysisRoot specifies are model components. By
default, all components are selected.

selectComponents(app) includes all components for Model Advisor analysis.

selectComponents(app,Name,Value) includes model components specified by
Name,Value pair arguments for Model Advisor analysis.

Input Arguments

app — Application
Advisor.Application object

Advisor.Application object, created by Advisor.Manager.createApplication

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 selectComponents

1-251

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'IDs' — Component IDs
cell array

Components to select for Model Advisor analysis, as specified by a cell array of IDs
Data Types: cell

'HierarchicalSelection' — Select component and component children
false (default) | true

Select components specified by IDs and component children from Model Advisor analysis.
Data Types: logical

Examples

Include All Components in Model Advisor Analysis

This example shows how to set the root model, create an Application object, set root
analysis, and include model components in Model Advisor analysis.

% Set root model to sldemo_mdlref_basic model

RootModel='sldemo_mdlref_basic';

% Create an Application object

app = Advisor.Manager.createApplication();

% Set the Application object root analysis

setAnalysisRoot(app,'Root',RootModel);

% Select all components

selectComponents(app);

Select Components for Model Advisor Analysis Using IDs

This example shows how to set the root model, create an Application object, set root
analysis, and include model components using IDs.

% Set root model to sldemo_mdlref_basic model

RootModel='sldemo_mdlref_basic';

1 Functions — Alphabetical List

1-252

% Create an Application object

app = Advisor.Manager.createApplication();

% Set the Application object root analysis

setAnalysisRoot(app,'Root',RootModel);

% Select component using IDs

selectComponents(app,'IDs',RootModel);

See Also
Advisor.Manager.createApplication | Advisor.Application.setAnalysisRoot |
Advisor.Application.deselectComponents

Introduced in R2015b

 setAction

1-253

setAction
Class: ModelAdvisor.Check
Package: ModelAdvisor

Specify action for check

Syntax

setAction(check_obj, action_obj)

Description

setAction(check_obj, action_obj) returns the action object action.obj to use in
the check check_obj. The setAction method identifies the action you want to use in a
check.

See Also
ModelAdvisor.Action | “Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-254

setAlign
Class: ModelAdvisor.Paragraph
Package: ModelAdvisor

Specify paragraph alignment

Syntax

setAlign(paragraph, alignment)

Description

setAlign(paragraph, alignment) specifies the alignment of text. Possible values
are:

• 'left' (default)
• 'right'

• 'center'

Examples
report_paragraph = ModelAdvisor.Paragraph;

setAlign(report_paragraph, 'center');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

 setAnalysisRoot

1-255

setAnalysisRoot
Class: Advisor.Application
Package: Advisor

Specify model hierarchy for Model Advisor analysis

Syntax

setAnalysisRoot(app,'Root',root)

setAnalysisRoot(app,'Root',root,Name,Value)

Description

Specify the model hierarchy for an Application object analysis.

setAnalysisRoot(app,'Root',root) specifies the analysis root.

setAnalysisRoot(app,'Root',root,Name,Value) specifies the analysis root using
Name,Value options.

Input Arguments

app — Application
Advisor.Application object

Advisor.Application object, created by Advisor.Manager.createApplication

'Root',root — Name,Value argument specifying model or subsystem path
string

Comma-separated Name,Value argument specifying model or subsystem path

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Functions — Alphabetical List

1-256

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'RootType' — Analysis root
Model (default) | Subsystem

Examples

Specify Root Model as Analysis Root

This example shows how to set the root model, create an Application object, and set
the root analysis.

% Set root model to sldemo_mdlref_basic model

RootModel='sldemo_mdlref_basic';

% Create an Application object

app = Advisor.Manager.createApplication();

% Set the Application object root analysis

setAnalysisRoot(app,'Root',RootModel);

Specify Subsystem as Analysis Root

This example shows how to set the root model, create an Application object, and
specify a subsystem as the analysis root.

% Set root model to sldemo_mdlref_basic model

RootModel='sldemo_mdlref_basic';

% Create an Application object

app = Advisor.Manager.createApplication();

% Set the Application object root analysis

setAnalysisRoot(app,'Root','sldemo_mdlref_basic/CounterA','RootType','Subsystem');

See Also
Advisor.Manager.createApplication

Introduced in R2015b

 setAnalysisRoot

1-257

setAnalysisRoot
Class: slmetric.Engine
Package: slmetric

Specify model or subsystem for metric analysis

Syntax

setAnalysisRoot(slmetric_obj,'Root',root)

setAnalysisRoot(slmetric_obj,'Root',root,Name,Value)

Description

Specify the model or subsystem for slmetric.Engine metric object analysis.

setAnalysisRoot(slmetric_obj,'Root',root) specifies the metric analysis root.

setAnalysisRoot(slmetric_obj,'Root',root,Name,Value) specifies the metric
analysis root using Name,Value options.

Input Arguments

slmetric_obj — Metric engine
slmetric.Engine object

slmetric.Engine object, created by slmetric.Engine.

'Root',root — Name,Value argument specifying model or subsystem path
string

Comma-separated Name,Value argument specifying model or subsystem path.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Functions — Alphabetical List

1-258

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'RootType' — Metric analysis root
Model (default) | Subsystem

Examples

Specify Model for Metric Analysis

This example shows how to set the root model, create an slmetric.Engine object, and
specify the model for metric analysis.

% Set root model to vdp model

RootModel='vdp';

% Create an slmetric.Engine object

slmetric_obj = slmetric.Engine();

% Specify model for metric analysis

setAnalysisRoot(slmetric_obj,'Root',RootModel);

Specify Subsystem for Metric Analysis

This example shows how to set the root model, create an slmetric.Engine object, and
specify a subsystem for metric analysis.

% Set subsystem to CounterA

Subsys ='sf_car/Engine';

% Create an slmetric.Engine object

slmetric_obj = slmetric.Engine();

% Set a subsystem for metric analysis

setAnalysisRoot(slmetric_obj,'Root',Subsys,'RootType','Subsystem');

See Also
slmetric.metric.ResultCollection | slmetric.metric.Metric |
slmetric.metric.getAvailableMetrics

 setAnalysisRoot

1-259

More About
• “Model Metrics Results API” on page 4-2
• “Collect Model Metrics Programmatically”
• “Model Metrics”

Introduced in R2016a

1 Functions — Alphabetical List

1-260

setBold
Class: ModelAdvisor.Text
Package: ModelAdvisor

Specify bold text

Syntax

setBold(text, mode)

Description

setBold(text, mode) specifies whether text should be formatted in bold font.

Input Arguments

text Instantiation of the ModelAdvisor.Text class
mode A Boolean value indicating bold formatting of text:

• true — Format the text in bold font.
• false — Do not format the text in bold font.

Examples
t1 = ModelAdvisor.Text('This is some text');

setBold(t1, 'true');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

 setCallbackFcn

1-261

setCallbackFcn
Class: ModelAdvisor.Action
Package: ModelAdvisor

Specify action callback function

Syntax
setCallbackFcn(action_obj, @handle)

Description
setCallbackFcn(action_obj, @handle) specifies the handle to the callback
function, handle, to use with the action object, action_obj.

Examples

Note: The following example is a fragment of code from the sl_customization.m file
for the example model, slvnvdemo_mdladv. The example does not execute as shown
without the additional content found in the sl_customization.m file.

rec = ModelAdvisor.Check('mathworks.example.optimizationSettings');

% Define an automatic fix action for this check

modifyAction = ModelAdvisor.Action;

modifyAction.setCallbackFcn(@modifyOptmizationSetting);

modifyAction.Name = 'Modify Settings';

modifyAction.Description = ['Modify model configuration optimization' ...

 ' settings that can impact safety'];

modifyAction.Enable = true;

rec.setAction(modifyAction);

See Also
“Model Advisor Customization”

How To
• “Define Check Actions”

1 Functions — Alphabetical List

1-262

• “Create Model Advisor Checks”
• “setActionEnable”

 setCallbackFcn

1-263

setCallbackFcn
Class: ModelAdvisor.Check
Package: ModelAdvisor

Specify callback function for check

Syntax
setCallbackFcn(check_obj, @handle, context, style)

Description
setCallbackFcn(check_obj, @handle, context, style) specifies the callback
function to use with the check, check_obj.

Input Arguments
check_obj Instantiation of the ModelAdvisor.Check class
handle Handle to a check callback function
context Context for checking the model or subsystem:

• 'None' — No special requirements.
• 'PostCompile' — The model must be compiled.

style Type of callback function:

• 'StyleOne' — Simple check callback function, for formatting
results using template

• 'StyleTwo' — Detailed check callback function
• 'StyleThree' — Check callback functions with hyperlinked

results

Examples
% --- sample check 1

1 Functions — Alphabetical List

1-264

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

rec.Title = 'Check Simulink block font';

rec.TitleTips = 'Example style three callback';

rec.setCallbackFcn(@SampleStyleThreeCallback,'None','StyleThree');

See Also
“Model Advisor Customization”

How To
• “Create Callback Functions and Results”
• “Create Model Advisor Checks”

 setCheck

1-265

setCheck
Class: ModelAdvisor.Task
Package: ModelAdvisor

Specify check used in task

Syntax

setCheck(task, check_ID)

Description

setCheck(task, check_ID) specifies the check to use in the task.

You can use one ModelAdvisor.Check object in multiple ModelAdvisor.Task objects,
allowing you to place the same check in multiple locations in the Model Advisor tree.
For example, Check for implicit signal resolution appears in the By Product
> Simulink folder and in the By Task > Model Referencing folder in the Model
Advisor tree.

When adding checks as tasks, the Model Advisor uses the task properties instead of the
check properties, except for Visible and LicenseName.

Input Arguments

task Instantiation of the ModelAdvisor.Task class
check_ID A unique string that identifies the check to use in the task

Examples
MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

setCheck(MAT1, 'com.mathworks.sample.Check1');

1 Functions — Alphabetical List

1-266

setCheckText
Class: ModelAdvisor.FormatTemplate
Package: ModelAdvisor

Add description of check to result

Syntax

setCheckText(ft_obj, text)

Description

setCheckText(ft_obj, text) is an optional method that adds text or a model
advisor template object as the first item in the report. Use this method to add
information describing the overall check.

Input Arguments

ft_obj

A handle to a template object.

text

A string or a handle to a formatting object.

Valid formatting objects are: ModelAdvisor.Image, ModelAdvisor.LineBreak,
ModelAdvisor.List, ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

text appears as the first line in the analysis result.

Examples

Create a list object, ft, and add a line of text to the result:

 setCheckText

1-267

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setCheckText(ft, ['Identify unconnected lines, input ports,'...

 'and output ports in the model']);

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

1 Functions — Alphabetical List

1-268

setColHeading
Class: ModelAdvisor.Table
Package: ModelAdvisor

Specify table column title

Syntax

setColHeading(table, column, heading)

Description

setColHeading(table, column, heading) specifies that the column header of
column is set to heading.

Input Arguments

table Instantiation of the ModelAdvisor.Table class
column An integer specifying the column number
heading A string, element object, or object array specifying the table

column title

Examples

table1 = ModelAdvisor.Table(2, 3);

setColHeading(table1, 1, 'Header 1');

setColHeading(table1, 2, 'Header 2');

setColHeading(table1, 3, 'Header 3');

See Also
“Model Advisor Customization”

 setColHeading

1-269

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-270

setColHeadingAlign
Class: ModelAdvisor.Table
Package: ModelAdvisor

Specify column title alignment

Syntax

setColHeadingAlign(table, column, alignment)

Description

setColHeadingAlign(table, column, alignment) specifies the alignment of the
column heading.

Input Arguments

table Instantiation of the ModelAdvisor.Table class
column An integer specifying the column number
alignment Alignment of the column heading. alignment can have one of the

following values:

• left (default)
• right

• center

Examples
table1 = ModelAdvisor.Table(2, 3);

setColHeading(table1, 1, 'Header 1');

setColHeadingAlign(table1, 1, 'center');

setColHeading(table1, 2, 'Header 2');

setColHeadingAlign(table1, 2, 'center');

 setColHeadingAlign

1-271

setColHeading(table1, 3, 'Header 3');

setColHeadingAlign(table1, 3, 'center');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-272

setColHeadingValign
Class: ModelAdvisor.Table
Package: ModelAdvisor

Specify column title vertical alignment

Syntax

setColHeadingValign(table, column, alignment)

Description

setColHeadingValign(table, column, alignment) specifies the vertical
alignment of the column heading.

Input Arguments

table Instantiation of the ModelAdvisor.Table class
column An integer specifying the column number
alignment Vertical alignment of the column heading. alignment can have

one of the following values:

• top (default)
• middle

• bottom

Examples
table1 = ModelAdvisor.Table(2, 3);

setColHeading(table1, 1, 'Header 1');

setColHeadingValign(table1, 1, 'middle');

setColHeading(table1, 2, 'Header 2');

setColHeadingValign(table1, 2, 'middle');

 setColHeadingValign

1-273

setColHeading(table1, 3, 'Header 3');

setColHeadingValign(table1, 3, 'middle');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-274

setColor
Class: ModelAdvisor.Text
Package: ModelAdvisor

Specify text color

Syntax

setColor(text, color)

Description

setColor(text, color) sets the text color to color.

Input Arguments

text Instantiation of the ModelAdvisor.Text class
color An enumerated string specifying the color of the text. Possible

formatting options include:

• normal (default) — Text is default color.
• pass — Text is green.
• warn — Text is yellow.
• fail — Text is red.
• keyword — Text is blue.

Examples
t1 = ModelAdvisor.Text('This is a warning');

setColor(t1, 'warn');

 setColSpan

1-275

setColSpan
Class: ModelAdvisor.InputParameter
Package: ModelAdvisor

Specify number of columns for input parameter

Syntax

setColSpan(input_param, [start_col end_col])

Description

setColSpan(input_param, [start_col end_col]) specifies the number of
columns that the parameter occupies. Use the setColSpan method to specify where
you want an input parameter located in the layout grid when there are multiple input
parameters.

Input Arguments

input_param Instantiation of the ModelAdvisor.InputParameter class
start_col A positive integer representing the first column that the input

parameter occupies in the layout grid
end_col A positive integer representing the last column that the input

parameter occupies in the layout grid

Examples
inputParam2 = ModelAdvisor.InputParameter;

inputParam2.Name = 'Standard font size';

inputParam2.Value='12';

inputParam2.Type='String';

inputParam2.Description='sample tooltip';

inputParam2.setRowSpan([2 2]);

1 Functions — Alphabetical List

1-276

inputParam2.setColSpan([1 1]);

 setColTitles

1-277

setColTitles
Class: ModelAdvisor.FormatTemplate
Package: ModelAdvisor

Add column titles to table

Syntax

setColTitles(ft_obj, {col_title_1, col_title_2, ...})

Description

setColTitles(ft_obj, {col_title_1, col_title_2, ...}) is method you must
use when you create a template object that is a table type. Use it to specify the titles of
the columns in the table.

Note: Before adding data to a table, you must specify column titles.

Input Arguments

ft_obj

A handle to a template object.

col_title_N

A cell of strings or handles to formatting objects, specifying the column titles.

Valid formatting objects are: ModelAdvisor.Image, ModelAdvisor.LineBreak,
ModelAdvisor.List, ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

The order of the col_title_N inputs determines which column the title is in. If you do
not add data to the table, the Model Advisor does not display the table in the result.

1 Functions — Alphabetical List

1-278

Examples

Create a table object, ft, and specify two column titles:
ft = ModelAdvisor.FormatTemplate('TableTemplate');

setColTitles(ft, {'Index', 'Block Name'});

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

 setColWidth

1-279

setColWidth
Class: ModelAdvisor.Table
Package: ModelAdvisor

Specify column widths

Syntax

setColWidth(table, column, width)

Description

setColWidth(table, column, width) specifies the column.

The setColWidth method specifies the table column widths relative to the entire table
width. If column widths are [1 2 3], the second column is twice the width of the first
column, and the third column is three times the width of the first column. Unspecified
columns have a default width of 1. For example:

setColWidth(1, 1);

setColWidth(3, 2);

specifies [1 1 2] column widths.

Input Arguments

table Instantiation of the ModelAdvisor.Table class
column An integer specifying column number
width An integer or array of integers specifying the column widths,

relative to the entire table width

Examples
table1 = ModelAdvisor.Table(2, 3)

1 Functions — Alphabetical List

1-280

setColWidth(table1, 1, 1);

setColWidth(table1, 3, 2);

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

 setEntries

1-281

setEntries
Class: ModelAdvisor.Table
Package: ModelAdvisor

Set contents of table

Syntax

setEntries(content)

Description

setEntries(content) sets content of the table.

Input Arguments

content A 2–D cell array containing the contents of the table. Each
item of the cell array must be either a string or an instance
of ModelAdvisor.Element. The size of the cell array must be
equal to the size of the table specified in the ModelAdvisor.Table
constructor.

Examples
table = ModelAdvisor.Table(4,3);

contents = cell(4,3); % 4 by 3 table

for k=1:4

 for m=1:3

 contents{k,m} = ['Contents for row-' num2str(k) ' column-' num2str(m)];

 end

end

table.setEntries(contents);

See Also
“Model Advisor Customization”

1 Functions — Alphabetical List

1-282

How To
• “Create Model Advisor Checks”

 setEntry

1-283

setEntry
Class: ModelAdvisor.Table
Package: ModelAdvisor

Add cell to table

Syntax

setEntry(table, row, column, string)

setEntry(table, row, column, content)

Description

setEntry(table, row, column, string) adds a string to a cell in a table.

setEntry(table, row, column, content) adds an object specified by content to a
cell in a table.

Input Arguments

table Instantiation of the ModelAdvisor.Table class
row An integer specifying the row
column An integer specifying the column
string A string representing the contents of the entry
content An element object or object array specifying the content of the

table entries

Examples

Create two tables and insert table2 into the first cell of table1:

table1 = ModelAdvisor.Table(1, 1);

1 Functions — Alphabetical List

1-284

table2 = ModelAdvisor.Table(2, 3);

.

.

.

setEntry(table1, 1, 1, table2);

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

 setEntryAlign

1-285

setEntryAlign
Class: ModelAdvisor.Table
Package: ModelAdvisor

Specify table cell alignment

Syntax

setEntryAlign(table, row, column, alignment)

Description

setEntryAlign(table, row, column, alignment) specifies the cell alignment of
the designated cell.

Input Arguments

table Instantiation of the ModelAdvisor.Table class
row An integer specifying row number
column An integer specifying column number
alignment A string specifying the cell alignment. Possible values are:

• left (default)
• right

• center

Examples
table1 = ModelAdvisor.Table(2,3);

setHeading(table1, 'New Table');

.

.

1 Functions — Alphabetical List

1-286

.

setEntry(table1, 1, 1, 'First Entry');

setEntryAlign(table1, 1, 1, 'center');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

 setEntryValign

1-287

setEntryValign
Class: ModelAdvisor.Table
Package: ModelAdvisor

Specify table cell vertical alignment

Syntax

setEntryValign(table, row, column, alignment)

Description

setEntryValign(table, row, column, alignment) specifies the cell alignment of
the designated cell.

Input Arguments

table Instantiation of the ModelAdvisor.Table class
row An integer specifying row number
column An integer specifying column number
alignment A string specifying the cell vertical alignment. Possible values

are:

• top (default)
• middle

• bottom

Examples
table1 = ModelAdvisor.Table(2,3);

setHeading(table1, 'New Table');

.

1 Functions — Alphabetical List

1-288

.

.

setEntry(table1, 1, 1, 'First Entry');

setEntryValign(table1, 1, 1, 'middle');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

 setHeading

1-289

setHeading
Class: ModelAdvisor.Table
Package: ModelAdvisor

Specify table title

Syntax

setHeading(table, title)

Description

setHeading(table, title) specifies the table title.

Input Arguments

table Instantiation of the ModelAdvisor.Table class
title A string, element object, or object array that specifies the table

title

Examples
table1 = ModelAdvisor.Table(2, 3);

setHeading(table1, 'New Table');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-290

setHeadingAlign
Class: ModelAdvisor.Table
Package: ModelAdvisor

Specify table title alignment

Syntax

setHeadingAlign(table, alignment)

Description

setHeadingAlign(table, alignment) specifies the alignment for the table title.

Input Arguments

table Instantiation of the ModelAdvisor.Table class
alignment A string specifying the table title alignment. Possible values are:

• left (default)
• right

• center

Examples
table1 = ModelAdvisor.Table(2, 3);

setHeading(table1, 'New Table');

setHeadingAlign(table1, 'center');

See Also
“Model Advisor Customization”

 setHeadingAlign

1-291

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-292

setHyperlink
Class: ModelAdvisor.Image
Package: ModelAdvisor

Specify hyperlink location

Syntax

setHyperlink(image, url)

Description

setHyperlink(image, url) specifies the target location of the hyperlink associated
with image.

Input Arguments

image Instantiation of the ModelAdvisor.Image class
url A string specifying the target URL

Examples
matlab_logo=ModelAdvisor.Image;

setHyperlink(matlab_logo, 'http://www.mathworks.com');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

 setHyperlink

1-293

setHyperlink
Class: ModelAdvisor.Text
Package: ModelAdvisor

Specify hyperlinked text

Syntax

setHyperlink(text, url)

Description

setHyperlink(text, url) creates a hyperlink from the text to the specified URL.

Input Arguments

text Instantiation of the ModelAdvisor.Text class
url A string that specifies the target location of the URL

Examples
t1 = ModelAdvisor.Text('MathWorks home page');

setHyperlink(t1, 'http://www.mathworks.com');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-294

setImageSource
Class: ModelAdvisor.Image
Package: ModelAdvisor

Specify image location

Syntax

setImageSource(image_obj, source)

Description

setImageSource(image_obj, source) specifies the location of the image.

Input Arguments

image_obj Instantiation of the ModelAdvisor.Image class
source A string specifying the location of the image file

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

 setInformation

1-295

setInformation
Class: ModelAdvisor.FormatTemplate
Package: ModelAdvisor

Add description of subcheck to result

Syntax

setInformation(ft_obj, text)

Description

setInformation(ft_obj, text) is an optional method that adds text as the
first item after the subcheck title. Use this method to add information describing the
subcheck.

Input Arguments

ft_obj

A handle to a template object.

text

A string or a handle to a formatting object, that describes the subcheck.

Valid formatting objects are: ModelAdvisor.Image, ModelAdvisor.LineBreak,
ModelAdvisor.List, ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

The Model Advisor displays text after the title of the subcheck.

Examples

Create a list object, ft, and specify a subcheck title and description:

1 Functions — Alphabetical List

1-296

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setSubTitle(ft, ['Check for constructs in the model '...

 'that are not supported when generating code']);

setInformation(ft, ['Identify blocks that should not '...

 'be used for code generation.']);

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

 setInputParameters

1-297

setInputParameters

Class: ModelAdvisor.Check
Package: ModelAdvisor

Specify input parameters for check

Syntax

setInputParameters(check_obj, params)

Description

setInputParameters(check_obj, params) specifies
ModelAdvisor.InputParameter objects (params) to be used as input parameters to a
check (check_obj).

Input Arguments

check_obj Instantiation of the ModelAdvisor.Check class
params A cell array of ModelAdvisor.InputParameters objects

Examples

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

inputParam1 = ModelAdvisor.InputParameter;

inputParam2 = ModelAdvisor.InputParameter;

inputParam3 = ModelAdvisor.InputParameter;

setInputParameters(rec, {inputParam1,inputParam2,inputParam3});

See Also
“Model Advisor Customization” | ModelAdvisor.InputParameter

1 Functions — Alphabetical List

1-298

How To
• “Create Model Advisor Checks”

 setInputParametersLayoutGrid

1-299

setInputParametersLayoutGrid
Class: ModelAdvisor.Check
Package: ModelAdvisor

Specify layout grid for input parameters

Syntax

setInputParametersLayoutGrid(check_obj, [row col])

Description

setInputParametersLayoutGrid(check_obj, [row col]) specifies the layout grid
for input parameters in the Model Advisor. Use the setInputParametersLayoutGrid
method when there are multiple input parameters.

Input Arguments

check_obj Instantiation of the ModelAdvisor.Check class
row Number of rows in the layout grid
col Number of columns in the layout grid

Examples
% --- sample check 1

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

rec.Title = 'Check Simulink block font';

rec.TitleTips = 'Example style three callback';

rec.setCallbackFcn(@SampleStyleThreeCallback,'None','StyleThree');

rec.setInputParametersLayoutGrid([3 2]);

See Also
“Model Advisor Customization” | ModelAdvisor.InputParameter

1 Functions — Alphabetical List

1-300

How To
• “Create Model Advisor Checks”

 setItalic

1-301

setItalic
Class: ModelAdvisor.Text
Package: ModelAdvisor

Italicize text

Syntax

setItalic(text, mode)

Description

setItalic(text, mode) specifies whether text should be italicized.

Input Arguments

text Instantiation of the ModelAdvisor.Text class
mode A Boolean value indicating italic formatting of text:

• true — Italicize the text.
• false — Do not italicize the text.

Examples
t1 = ModelAdvisor.Text('This is some text');

setItalic(t1, 'true');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-302

setListObj
Class: ModelAdvisor.FormatTemplate
Package: ModelAdvisor

Add list of hyperlinks to model objects

Syntax

setListObj(ft_obj, {model_obj})

Description

setListObj(ft_obj, {model_obj}) is an optional method that generates a
bulleted list of hyperlinks to model objects. ft_obj is a handle to a list template object.
model_obj is a cell array of handles or full paths to blocks, or model objects that the
Model Advisor displays as a bulleted list of hyperlinks in the report.

Examples

Create a list object, ft, and add a list of the blocks found in the model:
ft = ModelAdvisor.FormatTemplate('ListTemplate');

% Find all the blocks in the system

allBlocks = find_system(system);

% Add the blocks to a list

setListObj(ft, allBlocks);

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

 setRecAction

1-303

setRecAction
Class: ModelAdvisor.FormatTemplate
Package: ModelAdvisor

Add Recommended Action section and text

Syntax

setRecAction(ft_obj, {text})

Description

setRecAction(ft_obj, {text}) is an optional method that adds a Recommended
Action section to the report. Use this method to describe how to fix the check.

Input Arguments

ft_obj

A handle to a template object.

text

A cell array of strings or handles to formatting objects, that describes the recommended
action to fix the issues reported by the check.

Valid formatting objects are: ModelAdvisor.Image, ModelAdvisor.LineBreak,
ModelAdvisor.List, ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

The Model Advisor displays the recommended action as a separate section below the list
or table in the report.

Examples

Create a list object, ft, find Gain blocks in the model, and recommend changing them:

1 Functions — Alphabetical List

1-304

ft = ModelAdvisor.FormatTemplate('ListTemplate');

% Find all Gain blocks

gainBlocks = find_system(gcs, 'BlockType','Gain');

% Find Gain blocks

for idx = 1:length(gainBlocks)

 gainObj = get_param(gainBlocks(idx), 'Object');

 setRecAction(ft, {'If you are using these blocks '...

 'as buffers, you should replace them with '...

 'Signal Conversion blocks'});

end

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

 setRefLink

1-305

setRefLink
Class: ModelAdvisor.FormatTemplate
Package: ModelAdvisor

Add See Also section and links

Syntax

setRefLink(ft_obj, {{'standard'}})

setRefLink(ft_obj, {{'url', 'standard'}})

Description

setRefLink(ft_obj, {{'standard'}}) is an optional method that adds a See
Also section above the table or list in the result. Use this method to add references to
standards. ft_obj is a handle to a template object. standard is a cell array of strings
that you want to display in the result. If you include more than one cell, the Model
Advisor displays the strings in a bulleted list.

setRefLink(ft_obj, {{'url', 'standard'}}) generates a list of links in the See
Also section. url is a string that indicates the location to link to. You must provide the
full link including the protocol. For example, http:\\www.mathworks.com is a valid
link, while www.mathworks.com is not a valid link. You can create a link to a protocol
that is valid URL, such as a web site address, a full path to a file, or a relative path to a
file.

Note: setRefLink expects a cell array of cell arrays for the second input.

Examples

Create a list object, ft, and add a related standard:
ft = ModelAdvisor.FormatTemplate('ListTemplate');

setRefLink(ft, {{'IEC 61508-3, Table A.3 (3) ''Language subset'''}});

Create a list object, ft, and add a list of related standards:

1 Functions — Alphabetical List

1-306

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setRefLink(ft, {

 {'IEC 61508-3, Table A.3 (2) ''Strongly typed programming language'''},...

 {'IEC 61508-3, Table A.3 (3) ''Language subset'''}});

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

 setRetainSpaceReturn

1-307

setRetainSpaceReturn

Class: ModelAdvisor.Text
Package: ModelAdvisor

Retain spacing and returns in text

Syntax

setRetainSpaceReturn(text, mode)

Description

setRetainSpaceReturn(text, mode) specifies whether the text must retain the
spaces and carriage returns.

Input Arguments

text Instantiation of the ModelAdvisor.Text class
mode A Boolean value indicating whether to preserve spaces and

carriage returns in the text:

• true (default) — Preserve spaces and carriage returns.
• false — Do not preserve spaces and carriage returns.

Examples

t1 = ModelAdvisor.Text('MathWorks home page');

setRetainSpaceReturn(t1, 'true');

See Also
“Model Advisor Customization”

1 Functions — Alphabetical List

1-308

How To
• “Create Model Advisor Checks”

 setRowHeading

1-309

setRowHeading
Class: ModelAdvisor.Table
Package: ModelAdvisor

Specify table row title

Syntax

setRowHeading(table, row, heading)

Description

setRowHeading(table, row, heading) specifies a title for the designated table row.

Input Arguments

table Instantiation of the ModelAdvisor.Table class
row An integer specifying row number
heading A string, element object, or object array specifying the table row

title

Examples
table1 = ModelAdvisor.Table(2,3);

setRowHeading(table1, 1, 'Row 1 Title');

setRowHeading(table1, 2, 'Row 2 Title');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-310

setRowHeadingAlign
Class: ModelAdvisor.Table
Package: ModelAdvisor

Specify table row title alignment

Syntax

setRowHeadingAlign(table, row, alignment)

Description

setRowHeadingAlign(table, row, alignment) specifies the alignment for the
designated table row.

Input Arguments

table Instantiation of the ModelAdvisor.Table class
row An integer specifying row number.
alignment A string specifying the cell alignment. Possible values are:

• left (default)
• right

• center

Examples
table1 = ModelAdvisor.Table(2, 3);

setRowHeading(table1, 1, 'Row 1 Title');

setRowHeadingAlign(table1, 1, 'center');

setRowHeading(table1, 2, 'Row 2 Title');

setRowHeadingAlign(table1, 2, 'center');

 setRowHeadingAlign

1-311

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-312

setRowHeadingValign
Class: ModelAdvisor.Table
Package: ModelAdvisor

Specify table row title vertical alignment

Syntax

setRowHeadingValign(table, row, alignment)

Description

setRowHeadingValign(table, row, alignment) specifies the vertical alignment
for the designated table row.

Input Arguments

table Instantiation of the ModelAdvisor.Table class
row An integer specifying row number.
alignment A string specifying the cell vertical alignment. Possible values

are:

• top (default)
• middle

• bottom

Examples
table1 = ModelAdvisor.Table(2, 3);

setRowHeading(table1, 1, 'Row 1 Title');

setRowHeadingValign(table1, 1, 'middle');

setRowHeading(table1, 2, 'Row 2 Title');

setRowHeadingValign(table1, 2, 'middle');

 setRowHeadingValign

1-313

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-314

setRowSpan
Class: ModelAdvisor.InputParameter
Package: ModelAdvisor

Specify rows for input parameter

Syntax

setRowSpan(input_param, [start_row end_row])

Description

setRowSpan(input_param, [start_row end_row]) specifies the number of rows
that the parameter occupies. Specify where you want an input parameter located in the
layout grid when there are multiple input parameters.

Input Arguments

input_param The input parameter object
start_row A positive integer representing the first row that the input

parameter occupies in the layout grid
end_row A positive integer representing the last row that the input

parameter occupies in the layout grid

Examples
inputParam2 = ModelAdvisor.InputParameter;

inputParam2.Name = 'Standard font size';

inputParam2.Value='12';

inputParam2.Type='String';

inputParam2.Description='sample tooltip';

inputParam2.setRowSpan([2 2]);

inputParam2.setColSpan([1 1]);

 setSubBar

1-315

setSubBar
Class: ModelAdvisor.FormatTemplate
Package: ModelAdvisor

Add line between subcheck results

Syntax

setSubBar(ft_obj, value)

Description

setSubBar(ft_obj, value) is an optional method that adds lines between results
for subchecks. ft_obj is a handle to a template object. value is a boolean value that
specifies when the Model Advisor includes a line between subchecks in the check results.
By default, the value is true, and the Model Advisor displays the bar. The Model Advisor
does not display the bar when you set the value to false.

Examples

Create a list object, ft, turn off the subbar:
ft = ModelAdvisor.FormatTemplate('ListTemplate');

setSubBar(ft, false);

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

1 Functions — Alphabetical List

1-316

setSubResultStatus
Class: ModelAdvisor.FormatTemplate
Package: ModelAdvisor

Add status to check or subcheck result

Syntax

setSubResultStatus(ft_obj, 'status')

Description

setSubResultStatus(ft_obj, 'status') is an optional method that displays the
status in the result. Use this method to display the status of the check or subcheck in the
result. ft_obj is a handle to a template object. status is a string identifying the status
of the check. Valid strings are:
Pass

Warn

Fail

Examples

Create a list object, ft, and add a passing status:
ft = ModelAdvisor.FormatTemplate('ListTemplate');

setSubResutlStatus(ft, 'Pass');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

 setSubResultStatusText

1-317

setSubResultStatusText
Class: ModelAdvisor.FormatTemplate
Package: ModelAdvisor

Add text below status in result

Syntax

setSubResultStatusText(ft_obj, message)

Description

setSubResultStatusText(ft_obj, message) is an optional method that displays
text below the status in the result. Use this method to describe the status.

Input Arguments

ft_obj

A handle to a template object.

message

A string or a handle to a formatting object that the Model Advisor displays below the
status in the report.

Valid formatting objects are: ModelAdvisor.Image, ModelAdvisor.LineBreak,
ModelAdvisor.List, ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

Examples

Create a list object, ft, add a passing status and a description of why the check passed:
ft = ModelAdvisor.FormatTemplate('ListTemplate');

1 Functions — Alphabetical List

1-318

setSubResutlStatus(ft, 'Pass');

setSubResultStatusText(ft, ['Constructs that are not supported when '...

 'generating code were not found in the model or subsystem']);

See Also
“Model Advisor Customization”

How To
• “Model Advisor Customization”
• “Format Check Results”

 setSubscript

1-319

setSubscript
Class: ModelAdvisor.Text
Package: ModelAdvisor

Specify subscripted text

Syntax

setSubscript(text, mode)

Description

setSubscript(text, mode) indicates whether to make text subscript.

Input Arguments

text Instantiation of the ModelAdvisor.Text class
mode A Boolean value indicating subscripted formatting of text:

• true — Make the text subscript.
• false — Do not make the text subscript.

Examples
t1 = ModelAdvisor.Text('This is some text');

setSubscript(t1, 'true');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-320

setSuperscript
Class: ModelAdvisor.Text
Package: ModelAdvisor

Specify superscripted text

Syntax

setSuperscript(text, mode)

Description

setSuperscript(text, mode) indicates whether to make text superscript.

Input Arguments

text Instantiation of the ModelAdvisor.Text class
mode A Boolean value indicating superscripted formatting of text:

• true — Make the text superscript.
• false — Do not make the text superscript.

Examples
t1 = ModelAdvisor.Text('This is some text');

setSuperscript(t1, 'true');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

 setSubTitle

1-321

setSubTitle
Class: ModelAdvisor.FormatTemplate
Package: ModelAdvisor

Add title for subcheck in result

Syntax

setSubTitle(ft_obj, title)

Description

setSubTitle(ft_obj, title) is an optional method that adds a subcheck result title.
Use this method when you create subchecks to distinguish between them in the result.

Input Arguments

ft_obj

A handle to a template object.

title

A string or a handle to a formatting object specifying the title of the subcheck.

Valid formatting objects are: ModelAdvisor.Image, ModelAdvisor.LineBreak,
ModelAdvisor.List, ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

Examples

Create a list object, ft, and add a subcheck title:
ft = ModelAdvisor.FormatTemplate('ListTemplate');

setSubTitle(ft, ['Check for constructs in the model '...

1 Functions — Alphabetical List

1-322

 'that are not supported when generating code']);

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

 setTableInfo

1-323

setTableInfo
Class: ModelAdvisor.FormatTemplate
Package: ModelAdvisor

Add data to table

Syntax

setTableInfo(ft_obj, {data})

Description

setTableInfo(ft_obj, {data}) is an optional method that creates a table. ft_obj
is a handle to a table template object. data is a cell array of strings or objects specifying
the information in the body of the table. The Model Advisor creates hyperlinks to objects.
If you do not add data to the table, the Model Advisor does not display the table in the
result.

Note: Before creating a table, you must specify column titles using the setColTitle
method.

Examples

Create a table object, ft, add column titles, and add data to the table:
ft = ModelAdvisor.FormatTemplate('TableTemplate');

setColTitle(ft, {'Index', 'Block Name'});

setTableInfo(ft, {'1', 'Gain'});

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-324

• “Format Check Results”

 setTableTitle

1-325

setTableTitle
Class: ModelAdvisor.FormatTemplate
Package: ModelAdvisor

Add title to table

Syntax

setTableTitle(ft_obj, title)

Description

setTableTitle(ft_obj, title) is an optional method that adds a title to a table.

Input Arguments

ft_obj

A handle to a template object.

title

A string or a handle to a formatting object specifying the title of the table.

Valid formatting objects are: ModelAdvisor.Image, ModelAdvisor.LineBreak,
ModelAdvisor.List, ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

The title appears above the table. If you do not add data to the table, the Model Advisor
does not display the table and title in the result.

Examples

Create a table object, ft, and add a table title:

1 Functions — Alphabetical List

1-326

ft = ModelAdvisor.FormatTemplate('TableTemplate');

setTableTitle(ft, 'Table of fonts and styles used in model');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”
• “Format Check Results”

 setType

1-327

setType

Class: ModelAdvisor.List
Package: ModelAdvisor

Specify list type

Syntax

setType(list_obj, listType)

Description

setType(list_obj, listType) specifies the type of list the ModelAdvisor.List
constructor creates.

Input Arguments

list_obj Instantiation of the ModelAdvisor.List class
listType Specifies the list type:

• numbered

• bulleted

Examples
subList = ModelAdvisor.List();

subList.setType('numbered')

subList.addItem(ModelAdvisor.Text('Sub entry 1', {'pass','bold'}));

subList.addItem(ModelAdvisor.Text('Sub entry 2', {'pass','bold'}));

See Also
“Model Advisor Customization”

1 Functions — Alphabetical List

1-328

How To
• “Create Model Advisor Checks”

 setUnderlined

1-329

setUnderlined
Class: ModelAdvisor.Text
Package: ModelAdvisor

Underline text

Syntax

setUnderlined(text, mode)

Description

setUnderlined(text, mode) indicates whether to underline text.

Input Arguments

text Instantiation of the ModelAdvisor.Text class
mode A Boolean value indicating underlined formatting of text:

• true — Underline the text.
• false — Do not underline the text.

Examples
t1 = ModelAdvisor.Text('This is some text');

setUnderlined(t1, 'true');

See Also
“Model Advisor Customization”

How To
• “Create Model Advisor Checks”

1 Functions — Alphabetical List

1-330

sigrangeinfo
Retrieve signal range coverage information from cvdata object

Syntax

[min, max] = sigrangeinfo(cvdo, object)

[min, max] = sigrangeinfo(cvdo, object, portID)

Description

[min, max] = sigrangeinfo(cvdo, object) returns the minimum and maximum
signal values output by the model component object within the cvdata object cvdo.

[min, max] = sigrangeinfo(cvdo, object, portID) returns the minimum and
maximum signal values associated with the output port portID of the Simulink block
object.

Input Arguments

cvdo

cvdata object

object

An object in the model or Stateflow chart that receives signal range coverage. Valid
values for object include the following:

Object Specification Description

BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID

 sigrangeinfo

1-331

Object Specification Description

sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a Stateflow chart or

atomic subchart and the ID of an object contained
in that chart or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or
atomic subchart and a Stateflow object API handle
contained in that chart or subchart

[BlockHandle, sfID] Array with a handle to a Stateflow chart or atomic
subchart and the ID of an object contained in that
chart or subchart

portID

Output port of the block object

Output Arguments

max

Maximum signal value output by the model component object within the cvdata
object, cvdo. If object outputs a vector, min and max are also vectors.

min

Minimum signal value output by the model component object within the cvdata object,
cvdo. If object outputs a vector, min and max are also vectors.

Alternatives

Use the Coverage Settings dialog box to collect signal range coverage for a model:

1 Open the model for which you want to collect signal range coverage.
2 In the Model Editor, select Analysis > Coverage > Settings.
3 On the Coverage tab, select Coverage for this model.
4 Under Coverage metrics, select Signal Range.

1 Functions — Alphabetical List

1-332

5 On the Results and Reporting tabs, specify the output you need.
6 Click OK to close the Coverage Settings dialog box and save your changes.
7 Simulate the model and review the results.

Examples

Collect signal range data for the Product block in the
slvnvdemo_cv_small_controller model:

mdl = 'slvnvdemo_cv_small_controller';

open_system(mdl)

%Create test spec object

testObj = cvtest(mdl)

%Enable signal range coverage

testObj.settings.sigrange = 1;

%Simulate the model

data = cvsim(testObj)

blk_handle = get_param([mdl, '/Product'], 'Handle');

%Get signal range data

[minVal, maxVal] = sigrangeinfo(data, blk_handle)

See Also
complexityinfo | cvsim | conditioninfo | decisioninfo | getCoverageInfo |
mcdcinfo | overflowsaturationinfo | sigsizeinfo | tableinfo

 sigsizeinfo

1-333

sigsizeinfo
Retrieve signal size coverage information from cvdata object

Syntax

[min, max, allocated] = sigsizeinfo(data, object)

[min, max, allocated] = sigsizeinfo(data, object, portID)

Description

[min, max, allocated] = sigsizeinfo(data, object) returns the minimum,
maximum, and allocated signal sizes for the outputs of model component object within
the coverage data object data, if object supports variable size signals.

[min, max, allocated] = sigsizeinfo(data, object, portID) returns the
minimum and maximum signal sizes associated with the output port portID of the
model component object.

Input Arguments

data

cvdata object

object

An object in the model or Stateflow chart that receives signal size coverage. Valid values
for object include the following:

Object Specification Description

BlockPath Full path to a Simulink model or block
BlockHandle Handle to a Simulink model or block
slObj Handle to a Simulink API object
sfID Stateflow ID

1 Functions — Alphabetical List

1-334

Object Specification Description

sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a Stateflow chart or

atomic subchart and the ID of an object contained
in that chart or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or
atomic subchart and a Stateflow object API handle
contained in that chart or subchart

[BlockHandle, sfID] Array with a handle to a Stateflow chart or atomic
subchart and the ID of an object contained in that
chart or subchart

portID

Output port number of the model component object

Output Arguments

max

Maximum signal size output by the model component object within the cvdata object
data. If object has multiple outputs, max is a vector.

min

Minimum signal size output by the model component object within the cvdata object
data. If object has multiple outputs, min is a vector.

allocated

Allocated signal size output by the model component object within the cvdata object
data. If object has multiple outputs, allocated is a vector.

Examples

Collect signal size coverage data for the Switch block in the sldemo_varsize_basic
model:

 sigsizeinfo

1-335

mdl = 'sldemo_varsize_basic';

open_system(mdl);

%Create test spec object

testObj = cvtest(mdl);

%Enable signal size coverage

testObj.settings.sigsize=1;

%Simulate the model

data = cvsim(testObj);

%Set the block handle

blk_handle = get_param([mdl, '/Switch'], 'Handle');

%Get signal size data

[minVal, maxVal, allocVal] = sigsizeinfo(data, blk_handle);

Alternatives

Use the Coverage Settings dialog box to collect signal size coverage for a model:

1 Open the model for which you want to collect signal size coverage.
2 In the Simulink Editor, select Analysis > Coverage > Settings.
3 On the Coverage tab, select Coverage for this model.
4 Under Coverage metrics, select Signal Size.
5 On the Results and Reporting tabs, specify the output you need.
6 Click OK to close the Coverage Settings dialog box and save your changes.
7 Simulate the model and review the results.

See Also
complexityinfo | cvsim | conditioninfo | decisioninfo | mcdcinfo |
sigrangeinfo | tableinfo

1 Functions — Alphabetical List

1-336

slmetric.Engine class
Package: slmetric

Collect metric data on models

Description
Use instances of slmetric.Engine to collect metric data on models.

Construction
slmetric_obj = slmetric.Engine creates a handle to a metric engine object.

Properties

AnalysisRoot — Name of root model or subsystem on which to collect metric data
string

Name of root model or subsystem on which to collect metric data, as specified by the
slmetric.Engine.setAnalysisRoot method. This property is read only.

Methods
execute Generate metric data
getMetrics Collect model metric data
setAnalysisRoot Specify model or subsystem for metric

analysis
exportMetrics Export model metrics

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

 slmetric.Engine class

1-337

Examples

Collect Model Metric Data

This example shows how to collect model metric data on vdp.

Create an slmetric.Engine object and set root analysis.

% Set root model to vdp model

RootModel='vdp';

% Create an slmetric.Engine object

slmetric_obj = slmetric.Engine();

% Specify model for metric analysis

setAnalysisRoot(slmetric_obj,'Root',RootModel);

Generate and collect model metric data.

% Generate and collect model metric data

execute(slmetric_obj);

results = getMetrics(slmetric_obj);

See Also
slmetric.metric.Result | slmetric.metric.ResultCollection |
slmetric.metric.getAvailableMetrics

More About
• “Collect Model Metrics Programmatically”
• Class Attributes
• Property Attributes

Introduced in R2016a

1 Functions — Alphabetical List

1-338

slmetric.metric.getAvailableMetrics
Package: slmetric.metric

Obtain available metrics

Syntax

IDs = slmetric.metric.getAvailableMetrics()

[IDs,props] = slmetric.metric.getAvailableMetrics()

Description

Obtain available metric IDs using IDs =
slmetric.metric.getAvailableMetrics()

Obtain available metric IDs and properties using [IDs,props] =
slmetric.metric.getAvailableMetrics()

Examples

Obtain Available Metric IDs for Model

This example shows how to obtain the available model metric IDs.

ID = slmetric.metric.getAvailableMetrics()

ID =

 'mathworks.metrics.CyclomaticComplexity'

 'mathworks.metrics.DescriptiveBlockNames'

 'mathworks.metrics.LayerSeparation'

 'mathworks.metrics.LibraryLinkCount'

 'mathworks.metrics.MatlabLOCCount'

 'mathworks.metrics.SimulinkBlockCount'

 'mathworks.metrics.StateflowChartObjectCount'

 'mathworks.metrics.StateflowLOCCount'

 'mathworks.metrics.SubSystemCount'

 slmetric.metric.getAvailableMetrics

1-339

 'mathworks.metrics.SubSystemDepth'

Obtain Available Metrics IDs and Metric Properties

This example shows how to obtain the available model metric properties.

[ID,PROPS]=slmetric.metric.getAvailableMetrics()

ID =

 'mathworks.metrics.CyclomaticComplexity'

 'mathworks.metrics.DescriptiveBlockNames'

 'mathworks.metrics.LayerSeparation'

 'mathworks.metrics.LibraryLinkCount'

 'mathworks.metrics.MatlabLOCCount'

 'mathworks.metrics.SimulinkBlockCount'

 'mathworks.metrics.StateflowChartObjectCount'

 'mathworks.metrics.StateflowLOCCount'

 'mathworks.metrics.SubSystemCount'

 'mathworks.metrics.SubSystemDepth'

PROPS =

1x10 struct array with fields:

 Description

 IsBuiltIn

 Version

Output Arguments

IDs — Metric IDs
cell array

Metric IDs, returned as a cell array of IDs.

props — Metric properties
structure array

Metric properties, returned as a structure array with the following fields:

Description String with a description of the metric algorithm.

1 Functions — Alphabetical List

1-340

IsBuiltIn Boolean indicating if the metric ships with Simulink
Verification and Validation™.

Version Metric algorithm version.

Data Types: struct

See Also
slmetric.Engine | slmetric.metric.Result | slmetric.metric.ResultCollection

Introduced in R2016a

 slmetric.metric.Result class

1-341

slmetric.metric.Result class
Package: slmetric.metric

Metrics for specified model component and metric algorithm

Description

Instances of slmetric.metric.Result contain the metric data for a specified model
component and metric algorithm.

Construction

slmetric_result_obj = slmetric.metric.Result creates a handle to a metric
results object.

Properties

ComponentID — Component ID
string

Unique identifier of the component object for which the metric is calculated.
Use ComponentID to trace the metric object to the generated metric results for
the object. Set the ComponentID or ComponentPath properties by using the
slmetric.metric.Metric.algorithm method.

This property is read/write.
Data Types: char

ComponentPath — Component path
string

Component path for which metric is calculated. Use ComponentPath as an alternative
to setting the ComponentID property. The metric engine converts the ComponentPath
to a ComponentID. Set the ComponentID or ComponentPath properties by using the
slmetric.metric.Metric.algorithm method.

1 Functions — Alphabetical List

1-342

This property is read/write.
Data Types: char

MetricID — Metric ID
string

Metric ID, as specified by the slmetric.Engine.getMetrics method.

This property is read/write.
Data Types: char

Value — Metric value
double (default)

Metric scalar value, generated by the algorithm for the metric specified by MetricID and
the component specified by ComponentID.

This property is read/write.
Data Types: double

AggregatedValue — Aggregated metric value
double (default)

Metric value aggregated across the model hierarchy. The metric engine implicitly
aggregates the metric values. Do not set this property.

This property is read only.
Data Types: double

Measures — Metric measures
double array

Metric measures, optionally specified by the metric algorithm. Metric measures contain
detailed information about the metric value. For example, for a metric that counts the
number of blocks per subsystem, you could specify measures that contain the number of
virtual and nonvirtual blocks. The metric value is the sum of the virtual and nonvirtual
block count.

Set the property using the slmetric.metric.Metric.algorithm method. This
property is read/write.

 slmetric.metric.Result class

1-343

Data Types: double

AggregatedMeasures — Aggregated metric measures
double array

Metric measures value aggregated across the model hierarchy. The metric engine
implicitly aggregates the metric measure values. Do not set this property.

This property is read only.
Data Types: double

UserData — User data
string

User data optionally provided by the metric algorithm.

This property is read/write.
Data Types: char

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Access Metric Results

This example shows how to access metrics for model vdp.

Create a slmetric.Engine object, set the analysis root, and collect metrics for model
vdp.

% Create an slmetric.Engine object

slmetric_obj = slmetric.Engine();

% Specify model for metric analysis

setAnalysisRoot(slmetric_obj,'Root','vdp','RootType','Model');

1 Functions — Alphabetical List

1-344

% Generate and collect model metrics

execute(slmetric_obj);

rc = getMetrics(slmetric_obj);

Display the metric result MetricID, ComponentPath, and Value.

for n=1:length(rc)

 if rc(n).Status == 0

 results = rc(n).Results;

 for m=1:length(results)

 disp(['MetricID: ',results(m).MetricID]);

 disp([' ComponentPath: ', results(m).ComponentPath]);

 disp([' Value: ', num2str(results(m).Value)]);

 end

 else

 disp(['No results for:', rc(n).MetricID]);

 end

 disp(' ');

end

See Also
slmetric.Engine | slmetric.metric.Metric | slmetric.metric.ResultCollection

More About
• “Model Metrics Results API” on page 4-2
• “Collect Model Metrics Programmatically”
• “Model Metrics”
• Class Attributes
• Property Attributes

Introduced in R2016a

 slmetric.metric.ResultCollection class

1-345

slmetric.metric.ResultCollection class
Package: slmetric.metric

Metric data for specified model metric

Description

Instances of slmetric.metric.ResultCollection contain the metric data for a
specific model metric.

Construction

slmetric_rescol_obj = slmetric.metric.ResultCollection creates a handle
to a metric result collection object.

Properties

MetricID — Metric ID
string

Metric ID, as specified in the metric algorithm. This property is read only.

Status — Unique identifier
integer

Status code of metric execution. This property is read only.

Integer Status

1 No result. Model component not found.
0 Result collected.
-1 No result. Error executing metric.
-2 No result available from previous run.
-3 No result. Compilation error.

1 Functions — Alphabetical List

1-346

Results — Array of slmetric.metric.Result objects
false (default) | true

Array of slmetric.metric.Result objects. This property is read only.

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

See Also
slmetric.Engine | slmetric.metric.Result | slmetric.metric.getAvailableMetrics

More About
• Class Attributes
• Property Attributes

Introduced in R2016a

 slvnvextract

1-347

slvnvextract
Extract subsystem or subchart contents into new model

Syntax

newModel = slvnvextract(subsystem)

newModel = slvnvextract(subchart)

newModel = slvnvextract(subsystem, showModel)

newModel = slvnvextract(subchart, showModel)

Description

newModel = slvnvextract(subsystem) extracts the contents of the Atomic
Subsystem block subsystem and creates a new model. slvnvextract returns the name
of the new model in newModel. slvnvextract uses the subsystem name for the model
name, appending a numeral to the model name if that model name already exists.

newModel = slvnvextract(subchart) extracts the contents of the atomic subchart
subchart and creates a new model. subchart should specify the full path of the atomic
subchart. slvnvextract uses the subchart name for the model name, appending a
numeral to the model name if that model name already exists.

Note: If the atomic subchart calls an exported graphical function that is outside the
subchart, slvnvextract creates the model, but the new model will not compile.

newModel = slvnvextract(subsystem, showModel) and newModel =
slvnvextract(subchart, showModel) open the extracted model if you set
showModel to true. The extracted model is only loaded if showModel is set to false.

Input Arguments

subsystem

Full path to the atomic subsystem

1 Functions — Alphabetical List

1-348

subchart

Full path to the atomic subchart

showModel

Boolean indicating whether to display the extracted model

Default: True

Output Arguments

newModel

Name of the new model

Examples

Extract the Atomic Subsystem block, Bus Counter, from the
sldemo_mdlref_conversion model and copy it into a new model:
open_system('sldemo_mdlref_conversion');

newmodel = slvnvextract('sldemo_mdlref_conversion/Bus Counter', true);

Extract the Atomic Subchart block, Sensor1, from the sf_atomic_sensor_pair model
and copy it into a new model:
open_system('sf_atomic_sensor_pair');

newmodel = ...

 slvnvextract('sf_atomic_sensor_pair/RedundantSensors/Sensor1', true);

 slvnvharnessopts

1-349

slvnvharnessopts
Generate default options for slvnvmakeharness

Syntax

harnessopts = slvnvharnessopts

Description

harnessopts = slvnvharnessopts generates the default configuration for running
slvnvmakeharness.

Output Arguments

harnessopts

A structure whose fields specify the default configuration for slvnvmakeharness. The
harnessopts structure can have the following fields. Default values are used if not
specified.

Field Description

harnessFilePath Specifies the file path for creating the harness model.
If an invalid path is specified, slvnvmakeharness
does not save the harness model, but it creates and
opens the harness model. If this option is not specified,
slvnvmakeharness generates a new harness model and
saves it in the MATLAB current folder.

Default: ''
modelRefHarness Generates the test harness model that includes model

in a Model block. When false, the test harness model
includes a copy of model.

Default: true

1 Functions — Alphabetical List

1-350

Field Description

usedSignalsOnly When true, the Signal Builder block in the harness
model has signals only for input signals used in the
model. The Simulink Design Verifier software must
be available, and model must be compatible with the
Simulink Design Verifier software to detect the used
input signals.

Default: false
systemTestHarness When true, generates a SystemTest™ harness. This

option requires dataFile path in addition to model.

Default: false

Examples

Create a test harness for the sldemo_mdlref_house model using the default options:

open_system('sldemo_mdlref_house');

harnessOpts = slvnvharnessopts;

[harnessfile] = slvnvmakeharness('sldemo_mdlref_house',...

 '', harnessOpts);

See Also
slvnvmakeharness

 slvnvlogsignals

1-351

slvnvlogsignals
Log test data for component or model during simulation

Syntax
data = slvnvlogsignals(model_block)

data = slvnvlogsignals(harness_model)

data = slvnvlogsignals(harness_model, test_case_index)

Description
data = slvnvlogsignals(model_block) simulates the model that contains
model_block and logs the input signals to the model_block block. model_block must
be a Simulink Model block. slvnvlogsignals records the logged data in the structure
data.

data = slvnvlogsignals(harness_model) simulates every test case in
harness_model and logs the input signals to the Test Unit block in the harness model.
You must generate harness_model using the Simulink Design Verifier analysis,
sldvmakeharness, or slvnvmakeharness.

data = slvnvlogsignals(harness_model, test_case_index) simulates
every test case in the Signal Builder block of the harness_model specified by
test_case_index. slvnvlogsignals logs the input signals to the Test Unit block in
the harness model. If you omit test_case_index, slvnvlogsignals simulates every
test case in the Signal Builder.

Input Arguments
model_block

Full block path name or handle to a Simulink Model block

harness_model

Name or handle to a harness model that the Simulink Design Verifier software,
sldvmakeharness, or slvnvmakeharness creates

1 Functions — Alphabetical List

1-352

test_case_index

Array of integers that specifies which test cases in the Signal Builder block of the
harness model to simulate

Output Arguments

data

Structure that contains the logged data

Examples

Log simulation data for a Model block. Use the logged data to create a harness model
and visualize the data in the referenced model.

1 Simulate the CounterB Model block, which references the
sldemo_mdlref_counter model, in the context of the sldemo_mdlref_basic
model and log the data:

open_system('sldemo_mdlref_basic');

data = slvnvlogsignals('sldemo_mdlref_basic/CounterB');

2 Create a harness model for sldemo_mdlref_counter using the logged data and the
default harness options:

load_system('sldemo_mdlref_counter');

harnessOpts = slvnvharnessopts

[harnessFilePath] = ...

 slvnvmakeharness('sldemo_mdlref_counter', data, ...

 harnessOpts);

See Also
sldvmakeharness | slvnvruncgvtest | slvnvruntest | slvnvmakeharness

 slvnvmakeharness

1-353

slvnvmakeharness
Generate Simulink Verification and Validation harness model

Syntax

[harnessFilePath] = slvnvmakeharness(model)

[harnessFilePath] = slvnvmakeharness(model, dataFile)

[harnessFilePath] = slvnvmakeharness(model, dataFile, harnessOpts)

Description

[harnessFilePath] = slvnvmakeharness(model) generates a test harness
from model, which is a handle to a Simulink model or a string with the model name.
slvnvmakeharness returns the path and file name of the generated harness model
in harnessFilePath. slvnvmakeharness creates an empty harness model; the test
harness includes one default test case that specifies the default values for all input
signals.

[harnessFilePath] = slvnvmakeharness(model, dataFile) generates a test
harness from the data file dataFile.

[harnessFilePath] = slvnvmakeharness(model, dataFile, harnessOpts)

generates a test harness from model using the dataFile and harnessOpts, which
specifies the harness creation options. Requires '' for dataFile if dataFile is not
available.

Input Arguments

model

Handle to a Simulink model or a string with the model name

dataFile

Name of the file containing the data.

Default: ''

1 Functions — Alphabetical List

1-354

harnessOpts

A structure whose fields specify the configuration for slvnvmakeharness:

Field Description

harnessFilePath Specifies the file path for creating the harness model.
If an invalid path is specified, slvnvmakeharness
does not save the harness model, but it creates and
opens the harness model. If this option is not specified,
the slvnvoptions object is used. If this option is not
specified, slvnvmakeharness generates a new harness
model and saves it in the MATLAB current folder.

Default: ''
modelRefHarness Generates the test harness model that includes model

in a Model block. When false, the test harness model
includes a copy of model.

Default: true

Note: If your model contains bus objects and you set
modelRefHarness to true, in the Configuration
Parameters > Diagnostics > Connectivity pane, you
must set the Mux blocks used to create bus signals
parameter to error. For more information, see “Prevent
Bus and Mux Mixtures”.

usedSignalsOnly When true, the Signal Builder block in the harness
model has signals only for input signals used in the
model. The Simulink Design Verifier software must
be available, and model must be compatible with the
Simulink Design Verifier software to detect the used
input signals.

Default: false
systemTestHarness When true, generates a SystemTest harness. This option

requires dataFile path in addition to model.

Default: false

 slvnvmakeharness

1-355

Note: To create a default harnessOpts object, at the MATLAB command prompt, type:

slvnvharnessopts

Output Arguments

harnessFilePath

String containing the path and file name of the generated harness model

Examples

Create a test harness for the sldemo_mdlref_house model using the default options:
open_system('sldemo_mdlref_house');

[harnessfile] = slvnvmakeharness('sldemo_mdlref_house', '', harnessOpts);

See Also
slvnvharnessopts | slvnvmergeharness

1 Functions — Alphabetical List

1-356

slvnvmergedata
Combine test data from data files

Syntax

merged_data = slvnvmergedata(data1,data2,...)

Description

merged_data = slvnvmergedata(data1,data2,...) combines two or more test
cases and counterexamples data into a single test case data structure merged_data.

Input Arguments

data

Structure that contains test case or counterexample data. Generate this structure by
running slvnvlogsignals, or by running a Simulink Design Verifier analysis.

Output Arguments

merged_data

Structure that contains the merged test cases or counterexamples

Examples

Open the sldemo_mdlref_basic model, which contains three Model blocks that
reference the model sldemo_mdlref_counter. Log the input signals to the three Model
blocks and merge the logged data using slvnvmergedata. Simulate the referenced
model, sldemo_mdlref_counter, for coverage with the merged data and display the
coverage results in an HTML file.

 slvnvmergedata

1-357

sldemo_mdlref_basic;

data1 = slvnvlogsignals('sldemo_mdlref_basic/CounterA');

data2 = slvnvlogsignals('sldemo_mdlref_basic/CounterB');

data3 = slvnvlogsignals('sldemo_mdlref_basic/CounterC');

merged_data = slvnvmergedata(data1, data2, data3);

open_system('sldemo_mdlref_counter');

runOpts = slvnvruntestopts;

runOpts.coverageEnabled = true;

[outData, initialCov] = slvnvruntest('sldemo_mdlref_counter', ...

 merged_data, runOpts);

cvhtml('Initial coverage', initialCov);

See Also
slvnvlogsignals | slvnvmakeharness | slvnvruncgvtest | slvnvruntest |
sldvrun

1 Functions — Alphabetical List

1-358

slvnvmergeharness
Combine test data from harness models

Syntax

status = slvnvmergeharness(name, models, initialization_commands)

Description

status = slvnvmergeharness(name, models, initialization_commands)

collects the test data and initialization commands from each test harness model in
models. slvnvharnessmerge saves the data and initialization commands in name,
which is a handle to the new model.

initialization_commands is a cell array of strings the same length as models. It
defines parameter settings for the test cases of each test harness model.

If name does not exist, slvnvmergeharness creates it as a copy of the first model
in models. slvnvmergeharness then merges data from other models listed in
models into this model. If you create name from a previous slvnvmergeharness
run, subsequent runs of slvnvmergeharness for name maintain the structure and
initialization from the earlier run. If name matches an existing Simulink model,
slvnvmergeharness merges the test data from models into name.

slvnvmergeharness assumes that name and the rest of the models in models have
only one Signal Builder block on the top level. If a model in models does not meet
this restriction or its top-level Signal Builder block does not have the same number of
signals as the top-level Signal Builder block in name, slvnvmergeharness does not
merge that model's test data into name.

Input Arguments

name

Name of the new harness model, to be stored in the default MATLAB folder

 slvnvmergeharness

1-359

Default:

models

A cell array of strings that represent harness model names

initialization_commands

A cell array of strings the same length as models. initialization_commands defines
parameter settings for the test cases of each test harness model.

Output Arguments

status

If the function saves the data and initialization commands in name,
slvnvmergeharness returns a status of 1. Otherwise, it returns 0.

Examples

Log the input signals to the three Model blocks in the sldemo_mdlref_basic example
model that each reference the same model. Make three test harnesses using the logged
signals and merge the three test harnesses:
open_system('sldemo_mdlref_basic');

data1 = slvnvlogsignals('sldemo_mdlref_basic/CounterA');

data2 = slvnvlogsignals('sldemo_mdlref_basic/CounterB');

data3 = slvnvlogsignals('sldemo_mdlref_basic/CounterC');

open_system('sldemo_mdlref_counter');

harness1FilePath = slvnvmakeharness('sldemo_mdlref_counter', data1);

harness2FilePath = slvnvmakeharness('sldemo_mdlref_counter', data2);

harness3FilePath = slvnvmakeharness('sldemo_mdlref_counter', data3)

[~, harness1] = fileparts(harness1FilePath);

[~, harness2] = fileparts(harness2FilePath);

[~, harness3] = fileparts(harness3FilePath);

slvnvmergeharness('new_harness_model',{harness1, harness2, harness3});

See Also
slvnvlogsignals | slvnvmakeharness

1 Functions — Alphabetical List

1-360

slvnvruncgvtest

Invoke Code Generation Verification (CGV) API and execute model

Syntax

cgvObject = slvnvruncgvtest(model, dataFile)

cgvObject = slvnvruncgvtest(model, dataFile, runOpts)

Description

cgvObject = slvnvruncgvtest(model, dataFile) invokes the Code Generation
Verification (CGV) API methods and executes the model using all test cases in
dataFile. cgvObject is a cgv.CGV object that slvnvruncgvtest creates during the
execution of the model. slvnvruncgvtest sets the execution mode for cgvObject
to'sim' by default.

cgvObject = slvnvruncgvtest(model, dataFile, runOpts) invokes CGV API
methods and executes the model using test cases in dataFile. runOpts defines the
options for executing the test cases. The settings in runOpts determine the configuration
of cgvObject.

Input Arguments

model

Name of the Simulink model to execute

dataFile

Name of the data file or a structure that contains the input data. Data can be generated
either by:

• Analyzing the model using the Simulink Design Verifier software.
• Using the slvnvlogsignals function.

 slvnvruncgvtest

1-361

runOpts

A structure whose fields specify the configuration of slvnvruncgvtest.

Field Name Description

testIdx Test case index array to simulate from dataFile.

If testIdx = [] (the default), slvnvruncgvtest simulates
all test cases.

allowCopyModel Specifies to create and configure the model if you have not
configured it for executing test cases with the CGV API.

If true and you have not configured your model to execute
test cases with the CGV API, slvnvruncgvtest copies the
model, fixes the configuration, and executes the test cases on
the copied model.

If false (the default), an error occurs if the tests cannot
execute with the CGV API.

Note: If you have not configured the top-level model or any
referenced models to execute test cases, slvnvruncgvtest
does not copy the model, even if allowCopyModel is true. An
error occurs.

cgvCompType Defines the software-in-the-loop (SIL) or processor-in-the-loop
(PIL) approach for CGV:

• 'topmodel' (default)
• 'modelblock'

cgvConn Specifies mode of execution for CGV:

• 'sim' (default)
• 'sil'

• 'pil'

Note: runOpts = slvnvruntestopts('cgv') returns a runOpts structure with the
default values for each field.

1 Functions — Alphabetical List

1-362

Output Arguments

cgvObject

cgv.CGV object that slvnvruncgvtest creates during the execution of model.

slvnvruncgvtest saves the following data for each test case executed in an array of
Simulink.SimulationOutput objects inside cgvObject.

Field Description

tout_slvnvruncgvtest Simulation time
xout_slvnvruncgvtest State data
yout_slvnvruncgvtest Output signal data
logsout_slvnvruncgvtest Signal logging data for:

• Signals connected to outports
• Signals that are configured for logging

on the model

Examples

Open the sldemo_mdlref_basic example model and log the input signals to the
CounterA Model block.
open_system('sldemo_mdlref_basic');

load_system('sldemo_mdlref_counter');

loggedData = slvnvlogsignals('sldemo_mdlref_basic/CounterA');

Create the default configuration object for slvnvruncgvtest, and allow the model to be
configured to execute test cases with the CGV API.
runOpts = slvnvruntestopts('cgv');

runOpts.allowCopyModel = true;

Using the logged signals, execute slvnvruncgvtest—first in simulation mode, and
then in Software-in-the-Loop (SIL) mode—to invoke the CGV API and execute the
specified test cases on the generated code for the model.
cgvObjectSim = slvnvruncgvtest('sldemo_mdlref_counter', loggedData, runOpts);

runOpts.cgvConn = 'sil';

 slvnvruncgvtest

1-363

cgvObjectSil = slvnvruncgvtest('sldemo_mdlref_counter', loggedData, runOpts);

Use the CGV API to compare the results of the first test case.
simout = cgvObjectSim.getOutputData(1);

silout = cgvObjectSil.getOutputData(1);

[matchNames, ~, mismatchNames, ~] = cgv.CGV.compare(simout, silout);

fprintf('\nTest Case: %d Signals match, %d Signals mismatch', ...

 length(matchNames), length(mismatchNames));

More About

Tips

To run slvnvruncgvtest, you must have a Embedded Coder® license.

If your model has parameters that are not configured for executing test cases with the
CGV API, slvnvruncgvtest reports warnings about the invalid parameters. If you see
these warnings, do one of the following:

• Modify the invalid parameters and rerun slvnvruncgvtest.
• Set allowCopyModel in runOpts to be true and rerun slvnvruncgvtest.

slvnvruncgvtest makes a copy of your model configured for executing test cases,
and invokes the CGV API.

See Also
cgv.CGV | slvnvlogsignals | slvnvruntest | slvnvruntestopts

1 Functions — Alphabetical List

1-364

slvnvruntest
Simulate model using input data

Syntax

outData = slvnvruntest(model, dataFile)

outData = slvnvruntest(model, dataFile, runOpts)

[outData, covData] = slvnvruntest(model, dataFile, runOpts)

Description

outData = slvnvruntest(model, dataFile) simulates model using all the test
cases in dataFile. outData is an array of Simulink.SimulationOutput class
objects. Each array element contains the simulation output data of the corresponding test
case.

outData = slvnvruntest(model, dataFile, runOpts) simulates model using all
the test cases in dataFile. runOpts defines the options for simulating the test cases.

[outData, covData] = slvnvruntest(model, dataFile, runOpts) simulates
model using the test cases in dataFile. When the runOpts field coverageEnabled
is true, the Simulink Verification and Validation software collects model coverage
information during the simulation. slvnvruntest returns the coverage data in the
cvdata object covData.

Input Arguments

model

Name or handle of the Simulink model to simulate

dataFile

Name of the data file or structure that contains the input data. You can generate
dataFile using the Simulink Design Verifier software, or by running the
slvnvlogsignals function.

 slvnvruntest

1-365

runOpts

A structure whose fields specify the configuration of slvnvruntest.

Field Description

testIdx Test case index array to simulate from
dataFile. If testIdx is [], slvnvruntest
simulates all test cases.

Default: []
coverageEnabled If true, specifies that the Simulink

Verification and Validation software collect
model coverage data during simulation.

Default: false
coverageSetting cvtest object for collecting model coverage. If

[], slvnvruntest uses the existing coverage
settings for model.

Default: []

Output Arguments

outData

An array of Simulink.SimulationOutput objects that simulating the test cases
generates. Each Simulink.SimulationOutput object has the following fields.

Field Name Description

tout_slvnvruntest Simulation time
xout_slvnvruntest State data
yout_slvnvruntest Output signal data
logsout_slvnvruntest Signal logging data for:

• Signals connected to outports
• Signals that are configured for logging

on the model

1 Functions — Alphabetical List

1-366

covData

cvdata object that contains the model coverage data collected during simulation.

Examples

Analyze the sldemo_mdlref_basic model and log the input signals to the CounterA
Model block:

open_system('sldemo_mdlref_basic');

loggedData = slvnvlogsignals('sldemo_mdlref_basic/CounterA');

Using the logged signals, simulate the model referenced in the Counter block
(sldemo_mdlref_counter):

runOpts = slvnvruntestopts;

runOpts.coverageEnabled = true;

open_system('sldemo_mdlref_counter');

[outData] = slvnvruntest('sldemo_mdlref_counter',...

 loggedData, runOpts);

Examine the output data from the first test case using the Simulation Data Inspector:

Simulink.sdi.createRun('Test Case 1 Output', 'namevalue',...

 {'output'}, {outData(1).find('logsout_slvnvruntest')});

Simulink.sdi.view;

More About

Tips

The dataFile that you create with a Simulink Design Verifier analysis or by running
slvnvlogsignals contains time values and data values. When you simulate a model
using these test cases, you might see missing coverage. This issue occurs when the
time values in the dataFile are not aligned with the current simulation time step due
to numeric calculation differences. You see this issue more frequently with multirate
models—models that have multiple sample times.

See Also
cvsim | cvtest | sim | slvnvruntestopts

 slvnvruntestopts

1-367

slvnvruntestopts
Generate simulation or execution options for slvnvruntest or slvnvruncgvtest

Syntax

runOpts = slvnvruntestopts

runOpts = slvnvruntestopts('cgv')

Description

runOpts = slvnvruntestopts generates a runOpts structure for slvnvruntest.

runOpts = slvnvruntestopts('cgv') generates a runOpts structure for
slvnvruncgvtest.

Output Arguments

runOpts

A structure whose fields specify the configuration of slvnvruntest or
slvnvruncgvtest. runOpts can have the following fields. If you do not specify a field,
slvnvruncgvtest or slvnvruntest uses the default value.

Field Name Description

testIdx Test case index array to simulate or execute from data file.

If testIdx = [], all test cases are simulated or executed.

Default: []
coverageEnabled Available only for slvnvruntest.

If true, slvnvruntest collects model coverage data
during simulation.

Default: false

1 Functions — Alphabetical List

1-368

Field Name Description

coverageSetting Available only for slvnvruntest.

cvtest object to use for collecting model coverage.

If coverageSetting is [], slvnvruntest uses the
coverage settings for the model specified in the call to
slvnvruntest.

Default: []
allowCopyModel Available only for slvnvruncgvtest.

Specifies to create and configure the model if you have not
configured it to execute test cases with the CGV API.

If true and you have not configured the model to execute
test cases with the CGV API, slvnvruncgvtest copies
the model, fixes the configuration, and executes the test
cases on the copied model.

If false, an error occurs if the tests cannot execute with
the CGV API.

Note: If you have not configured the top-level model
or any referenced models to execute test cases,
slvnvruncgvtest does not copy the model, even if
allowCopyModel is true. An error occurs.

Default:false
cgvCompType Available only for slvnvruncgvtest.

Defines the software-in-the-loop (SIL) or processor-in-the-
loop (PIL) approach for CGV:

• 'topmodel'

• 'modelblock'

Default:'topmodel'

 slvnvruntestopts

1-369

Field Name Description

cgvConn Available only for slvnvruncgvtest.

Specifies mode of execution for CGV:

• 'sim'

• 'sil'

• 'pil'

Default:'sim'

Examples

Create runOpts objects for slvnvruntest and slvnvruncgvtest:

%Create options for slvnvruntest

runtest_opts = slvnvruntestopts;

%Create options for slvnvruncgvtest

runcgvtest_opts = slvnvruntestopts('cgv')

Alternatives

Create a runOpts object at the MATLAB command line.

See Also
slvnvruncgvtest | slvnvruntest

1 Functions — Alphabetical List

1-370

slwebview_cov
Export Simulink models to Web views with coverage

Syntax

filename = slwebview_cov(sysname)

filename = slwebview_cov(sysname,Name,Value)

Description

filename = slwebview_cov(sysname) exports the system sysname and its children
to a web page filename with contextual coverage information for the system displayed
on a separate panel of the layered model structure Web view.

filename = slwebview_cov(sysname,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Note: You can use slwebview_cov only if you have also installed Simulink Report
Generator™.

Examples

Export All Layers

Export all the layers (including libraries and masks) from the system gcs to the file
filename

filename = slwebview_cov(gcs, 'LookUnderMasks', 'all', 'FollowLinks', 'on')

Input Arguments

sysname — The system to export to a Web view file
string containing the path to the system | handle to a subsystem or block diagram |
handle to a chart or subchart

 slwebview_cov

1-371

Exports the specified system or subsystem and its child systems to a Web view file, with
contextual coverage information for the system displayed on a separate panel of the
layered model structure Web view. By default, child systems of the sysname system
are also exported. Use the SearchScope name-value pair to export other systems, in
relation to sysname.

Example: ‘sysname’

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:

'SearchScope' — Systems to export, relative to the sysname system
'CurrentAndBelow' (default) | 'Current' | 'CurrentAndAbove' | 'All'

'CurrentAndBelow' exports the Simulink system or the Stateflow chart specified by
sysname and all systems or charts that it contains.

'Current' exports only the Simulink system or the Stateflow chart specified by
sysname.

'CurrentAndAbove' exports the Simulink system or the Stateflow chart specified by
the sysname and all systems or charts that contain it.

'All' exports all Simulink systems or Stateflow charts in the model that contains the
system or chart specified by sysname.

Data Types: char

'LookUnderMasks' — Specifies whether to export the ability to interact with masked blocks
'none' (default) | 'all'

'none' does not export masked blocks in the Web view. Masked blocks are included in
the exported systems, but you cannot access the contents of the masked blocks.

'all' exports all masked blocks.

Data Types: char

1 Functions — Alphabetical List

1-372

'FollowLinks' — Specifies whether to follow links into library blocks
'off' (default) | 'on'

'off' does not allow you to follow links into library blocks in a Web view.

'on' allows you to follow links into library blocks in a Web view.

Data Types: char

'FollowModelReference' — Specifies whether to access referenced models in a Web view
'off' (default) | 'on'

'off' does not allow you to access referenced models in a Web view.

'on' allows you to access referenced models in a Web view.

Data Types: char

'ViewFile' — Specifies whether to display the Web view in a Web browser when you
export the Web view
'on' (default) | 'off'

'on' displays the Web view in a Web browser when you export the Web view.

'off' does not display the Web view in a Web browser when you export the Web view.

Data Types: char

'ShowProgressBar' — Specifies whether to display the status bar when you export a Web
view
'on' (default) | 'off'

'on' displays the status bar when you export a Web view.

'off' does not display the status bar when you export a Web view.

Data Types: char

'CovData' — cvdata objects to use
cvdata

The coverage data to use, specified as the comma-separated pair consisting of
'CovData' and the cvdata objects to use.

Example: 'CovData', covdata

 slwebview_cov

1-373

Output Arguments

filename — The name of the HTML file for displaying the Web view
string

Reports the name of the HTML file for displaying the Web view. Exporting a Web view
creates the supporting files, in a folder.

More About

Tips

A Web view is an interactive rendition of a model that you can view in a Web browser.
You can navigate a Web view hierarchically to examine specific subsystems and to see
properties of blocks and signals.

You can use Web views to share models with people who do not have Simulink installed.

Web views require a Web browser that supports Scalable Vector Graphics (SVG).

See Also
slwebview_req

Introduced in R2015a

1 Functions — Alphabetical List

1-374

slwebview_req
Export Simulink system to Web views with requirements

Syntax

filename = slwebview_req(sysname)

filename = slwebview_req(sysname,Name,Value)

Description

filename = slwebview_req(sysname) exports the system sysname and its children
to a web page filename with contextual requirements information for the system
displayed on a separate panel of the layered model structure Web view.

filename = slwebview_req(sysname,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Note: You can use slwebview_req only if you have also installed Simulink Report
Generator.

Examples

Export All Layers

Export all the layers (including libraries and masks) from the system gcs to the file
filename

filename = slwebview_req(gcs, 'LookUnderMasks', 'all', 'FollowLinks', 'on')

Input Arguments

sysname — The system to export to a Web view file
string containing the path to the system | handle to a subsystem or block diagram |
handle to a chart or subchart

 slwebview_req

1-375

Exports the specified system or subsystem and its child systems to a Web view file, with
contextual requirements information for the system displayed on a separate panel of
the layered model structure Web view. By default, child systems of the sysname system
are also exported. Use the SearchScope name-value pair to export other systems, in
relation to sysname.

Example: ‘sysname’

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:

'SearchScope' — Systems to export, relative to the sysname system
'CurrentAndBelow' (default) | 'Current' | 'CurrentAndAbove' | 'All'

'CurrentAndBelow' exports the Simulink system or the Stateflow chart specified by
sysname and all systems or charts that it contains.

'Current' exports only the Simulink system or the Stateflow chart specified by
sysname.

'CurrentAndAbove' exports the Simulink system or the Stateflow chart specified by
the sysname and all systems or charts that contain it.

'All' exports all Simulink systems or Stateflow charts in the model that contains the
system or chart specified by sysname.

Data Types: char

'LookUnderMasks' — Specifies whether to export the ability to interact with masked blocks
'none' (default) | 'all'

'none' does not export masked blocks in the Web view. Masked blocks are included in
the exported systems, but you cannot access the contents of the masked blocks.

'all' exports all masked blocks.

Data Types: char

1 Functions — Alphabetical List

1-376

'FollowLinks' — Specifies whether to follow links into library blocks
'off' (default) | 'on'

'off' does not allow you to follow links into library blocks in a Web view.

'on' allows you to follow links into library blocks in a Web view.

Data Types: char

'FollowModelReference' — Specifies whether to access referenced models in a Web view
'off' (default) | 'on'

'off' does not allow you to access referenced models in a Web view.

'on' allows you to access referenced models in a Web view.

Data Types: char

'ViewFile' — Specifies whether to display the Web view in a Web browser when you
export the Web view
'on' (default) | 'off'

'on' displays the Web view in a Web browser when you export the Web view.

'off' does not display the Web view in a Web browser when you export the Web view.

Data Types: char

'ShowProgressBar' — Specifies whether to display the status bar when you export a Web
view
'on' (default) | 'off'

'on' displays the status bar when you export a Web view.

'off' does not display the status bar when you export a Web view.

Data Types: char

Output Arguments

filename — The name of the HTML file for displaying the Web view
string

 slwebview_req

1-377

Reports the name of the HTML file for displaying the Web view. Exporting a Web view
creates the supporting files, in a folder.

More About

Tips

A Web view is an interactive rendition of a model that you can view in a Web browser.
You can navigate a Web view hierarchically to examine specific subsystems and to see
properties of blocks and signals.

You can use Web views to share models with people who do not have Simulink installed.

Web views require a Web browser that supports Scalable Vector Graphics (SVG).

See Also
slwebview_cov

Introduced in R2015a

1 Functions — Alphabetical List

1-378

tableinfo
Retrieve lookup table coverage information from cvdata object

Syntax

coverage = tableinfo(cvdo, object)

coverage = tableinfo(cvdo, object, ignore_descendants)

[coverage, exeCounts] = tableinfo(cvdo, object)

[coverage, exeCounts, brkEquality] = tableinfo(cvdo, object)

Description

coverage = tableinfo(cvdo, object) returns lookup table coverage results from
the cvdata object cvdo for the model component object.

coverage = tableinfo(cvdo, object, ignore_descendants) returns lookup
table coverage results for object, depending on the value of ignore_descendants.

[coverage, exeCounts] = tableinfo(cvdo, object) returns lookup table
coverage results and the execution count for each interpolation/extrapolation interval in
the lookup table block object.

[coverage, exeCounts, brkEquality] = tableinfo(cvdo, object) returns
lookup table coverage results, the execution count for each interpolation/extrapolation
interval, and the execution counts for breakpoint equality.

Input Arguments

cvdo

cvdata object

ignore_descendants

Logical value specifying whether to ignore the coverage of descendant objects
1 — Ignore coverage of descendant objects

 tableinfo

1-379

0 — Collect coverage for descendant objects

object

Full path or handle to a lookup table block or a model containing a lookup table block.

Output Arguments

brkEquality

A cell array containing vectors that identify the number of times during simulation that
the lookup table block input was equivalent to a breakpoint value. Each vector represents
the breakpoints along a different lookup table dimension.

coverage

The value of coverage is a two-element vector of form [covered_intervals
total_intervals], the elements of which are:

covered_intervals Number of interpolation/extrapolation
intervals satisfied for object

total_intervals Total number of interpolation/extrapolation
intervals for object

coverage is empty if cvdo does not contain lookup table coverage results for object.

exeCounts

An array having the same dimensionality as the lookup table block; its size has been
extended to allow for the lookup table extrapolation intervals.

Examples

Collect lookup table coverage for the slvnvdemo_cv_small_controller model and
determine the percentage of interpolation/extrapolation intervals coverage collected for
the Gain Table block in the Gain subsystem:

mdl = 'slvnvdemo_cv_small_controller';

open_system(mdl)

1 Functions — Alphabetical List

1-380

%Create test spec object

testObj = cvtest(mdl)

%Enable lookup table coverage

testObj.settings.tableExec = 1;

%Simulate the model

data = cvsim(testObj)

blk_handle = get_param([mdl, '/Gain/Gain Table'], 'Handle');

%Retrieve l/u table coverage

cov = tableinfo(data, blk_handle)

%Percent MC/DC outcomes covered

percent_cov = 100 * cov(1) / cov(2)

Alternatives

Use the Coverage Settings dialog box to collect lookup table coverage for a model:

1 Open the model.
2 In the Model Editor, select Analysis > Coverage > Settings.
3 On the Coverage tab, select Coverage for this model.
4 Under Coverage metrics, select Lookup Table.
5 On the Results and Reporting tabs, specify the output you need.
6 Click OK to close the Coverage Settings dialog box and save your changes.
7 Simulate the model and review the results.

More About
• “Lookup Table Coverage”

See Also
complexityinfo | cvsim | conditioninfo | decisioninfo | getCoverageInfo |
mcdcinfo | overflowsaturationinfo | sigrangeinfo | sigsizeinfo

 Attributes property

1-381

Attributes property
Class: ModelAdvisor.ListViewParameter
Package: ModelAdvisor

Attributes to display in Model Advisor Report Explorer

Values

Cell array

Default: {} (empty cell array)

Description

The Attributes property specifies the attributes to display in the center pane of the
Model Advisor Results Explorer.

Examples
% define list view parameters

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter

myLVParam.Data = get_param(searchResult,'object')';

myLVParam.Attributes = {'FontName'}; % name is default property

1 Functions — Alphabetical List

1-382

CallbackContext property
Class: ModelAdvisor.Check
Package: ModelAdvisor

Specify when to run check

Values
'PostCompile'

'None' (default)

Description

The CallbackContext property specifies the context for checking the model or
subsystem.

'None' No special requirements for the model before checking.
'Postcompile' The model must be compiled.

 CallbackHandle property

1-383

CallbackHandle property
Class: ModelAdvisor.Check
Package: ModelAdvisor

Callback function handle for check

Values

Function handle.

An empty handle [] is the default.

Description

The CallbackHandle property specifies the handle to the check callback function.

1 Functions — Alphabetical List

1-384

CallbackStyle property
Class: ModelAdvisor.Check
Package: ModelAdvisor

Callback function type

Values
'StyleOne' (default)
'StyleTwo'

'StyleThree'

Description

The CallbackStyle property specifies the type of the callback function.

'StyleOne' Simple check callback function
'StyleTwo' Detailed check callback function
'StyleThree' Check callback function with hyperlinked results

 EmitInputParametersToReport property

1-385

EmitInputParametersToReport property
Class: ModelAdvisor.Check
Package: ModelAdvisor

Display check input parameters in the Model Advisor report

Values
'true' (default)
'false'

Description

The EmitInputParametersToReport property specifies the display of check input
parameters in the Model Advisor report.

'true' Display check input parameters in the Model Advisor
report

'false' Do not display check input parameters in the Model
Advisor report

1 Functions — Alphabetical List

1-386

Data property
Class: ModelAdvisor.ListViewParameter
Package: ModelAdvisor

Objects in Model Advisor Result Explorer

Values

Array of Simulink objects

Default: [] (empty array)

Description

The Data property specifies the objects displayed in the Model Advisor Result Explorer.

Examples
% define list view parameters

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter

myLVParam.Data = get_param(searchResult,'object')';

 Description property

1-387

Description property
Class: ModelAdvisor.Action
Package: ModelAdvisor

Message in Action box

Values

String

Default:'' (null string)

Description

The Description property specifies the message displayed in the Action box.

Examples
% define action (fix) operation

myAction = ModelAdvisor.Action;

%Specify a callback function for the action

myAction.setCallbackFcn(@sampleActionCB);

myAction.Name='Fix block fonts';

myAction.Description=...

 'Click the button to update all blocks with specified font';

1 Functions — Alphabetical List

1-388

Description property
Class: ModelAdvisor.FactoryGroup
Package: ModelAdvisor

Description of folder

Values

String

Default: '' (null string)

Description

The Description property provides information about the folder. Details about the
folder are displayed in the right pane of the Model Advisor.

Examples
% --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

rec.Description='Sample Factory Group';

 Description property

1-389

Description property
Class: ModelAdvisor.Group
Package: ModelAdvisor

Description of folder

Values

String

Default: '' (null string)

Description

The Description property provides information about the folder. Details about the
folder are displayed in the right pane of the Model Advisor.

Examples
MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');

MAG.Description='This is my group';

1 Functions — Alphabetical List

1-390

Description property
Class: ModelAdvisor.InputParameter
Package: ModelAdvisor

Description of input parameter

Values

String.

Default: '' (null string)

Description

The Description property specifies a description of the input parameter. Details about
the check are displayed in the right pane of the Model Advisor.

Examples
% define input parameters

inputParam2 = ModelAdvisor.InputParameter;

inputParam2.Name = 'Standard font size';

inputParam2.Value='12';

inputParam2.Type='String';

inputParam2.Description='sample tooltip';

 Description property

1-391

Description property
Class: ModelAdvisor.Task
Package: ModelAdvisor

Description of task

Values

String

Default: '' (null string)

Description

The Description property is a description of the task that the Model Advisor displays
in the Analysis box.

When adding checks as tasks, the Model Advisor uses the task Description property
instead of the check TitleTips property.

Examples
MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT1.DisplayName='Example task 1';

MAT1.Description='This is the first example task.'

MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');

MAT2.DisplayName='Example task 2';

MAT2.Description='This is the second example task.'

MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

MAT3.DisplayName='Example task 3';

MAT3.Description='This is the third example task.'

1 Functions — Alphabetical List

1-392

DisplayName property
Class: ModelAdvisor.FactoryGroup
Package: ModelAdvisor

Name of folder

Values

String

Default:'' (null string)

Description

The DisplayName specifies the name of the folder that is displayed in the Model
Advisor.

Examples
% --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

rec.DisplayName='Sample Factory Group';

 DisplayName property

1-393

DisplayName property
Class: ModelAdvisor.Group
Package: ModelAdvisor

Name of folder

Values

String

Default:'' (null string)

Description

The DisplayName specifies the name of the folder that is displayed in the Model
Advisor.

Examples
MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');

MAG.DisplayName='My Group';

1 Functions — Alphabetical List

1-394

DisplayName property
Class: ModelAdvisor.Task
Package: ModelAdvisor

Name of task

Values

String

Default: '' (null string)

Description

The DisplayName property specifies the name of the task. The Model Advisor displays
each custom task in the tree using the name of the task. Therefore, you should specify
a unique name for each task. When you specify the same name for multiple tasks, the
Model Advisor generates a warning.

When adding checks as tasks, the Model Advisor uses the task DisplayName property
instead of the check Title property.

Examples
MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT1.DisplayName='Example task with input parameter and auto-fix ability';

MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');

MAT2.DisplayName='Example task 2';

MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

MAT3.DisplayName='Example task 3';

 Enable property

1-395

Enable property
Class: ModelAdvisor.Check
Package: ModelAdvisor

Indicate whether user can enable or disable check

Values
true (default)
false

Description

The Enable property specifies whether the user can enable or disable the check.

true Display the check box control
false Hide the check box control

1 Functions — Alphabetical List

1-396

Enable property
Class: ModelAdvisor.Task
Package: ModelAdvisor

Indicate if user can enable and disable task

Values
true (default)
false

Description

The Enable property specifies whether the user can enable or disable a task.

true (default) Display the check box control for task
false Hide the check box control for task

When adding checks as tasks, the Model Advisor uses the task Enable property instead
of the check Enable property.

Examples
MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT1.Enable = false;

 Entries property

1-397

Entries property
Class: ModelAdvisor.InputParameter
Package: ModelAdvisor

Drop-down list entries

Values

Depends on the value of the Type property.

Description

The Entries property is valid only when the Type property is one of the following:

• Enum

• ComboBox

• PushButton

Examples
inputParam3 = ModelAdvisor.InputParameter;

inputParam3.Name='Valid font';

inputParam3.Type='Combobox';

inputParam3.Description='sample tooltip';

inputParam3.Entries={'Arial', 'Arial Black'};

1 Functions — Alphabetical List

1-398

ID property
Class: ModelAdvisor.Check
Package: ModelAdvisor

Identifier for check

Values

String

Default: '' (null string)

Description

The ID property specifies a permanent, unique identifier for the check. Note the following
about the ID property:

• You must specify this property.
• The value of ID must remain constant.
• The Model Advisor generates an error if ID is not unique.
• Tasks and factory group definitions must refer to checks by ID.

 ID property

1-399

ID property
Class: ModelAdvisor.FactoryGroup
Package: ModelAdvisor

Identifier for folder

Values

String

Description

The ID property specifies a permanent, unique identifier for the folder.

Note:

• You must specify this field.

• The value of ID must remain constant.
• The Model Advisor generates an error if ID is not unique.
• Group definitions must refer to other groups by ID.

1 Functions — Alphabetical List

1-400

ID property
Class: ModelAdvisor.Group
Package: ModelAdvisor

Identifier for folder

Values

String

Description

The ID property specifies a permanent, unique identifier for the folder.

Note:

• You must specify this field.

• The value of ID must remain constant.
• The Model Advisor generates an error if ID is not unique.
• Group definitions must refer to other groups by ID.

 ID property

1-401

ID property
Class: ModelAdvisor.Task
Package: ModelAdvisor

Identifier for task

Values

String

Default: '' (null string)

Description

The ID property specifies a permanent, unique identifier for the task.

Note:

• The Model Advisor automatically assigns a string to ID if you do not specify it.

• The value of ID must remain constant.
• The Model Advisor generates an error if ID is not unique.
• Group definitions must refer to tasks using ID.

Examples
MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT1.ID='Task_ID_1234';

1 Functions — Alphabetical List

1-402

LicenseName property
Class: ModelAdvisor.Check
Package: ModelAdvisor

Product license names required to display and run check

Values

Cell array of product license names
{}(empty cell array) (default)

Description

The LicenseName property specifies a cell array of names for product licenses required
to display and run the check.

When the Model Advisor starts, it tests whether the product license exists. If you do not
meet the license requirements, the Model Advisor does not display the check.

The Model Advisor performs a checkout of the product licenses when you run the custom
check. If you do not have the product licenses available, you see an error message that
the required license is not available.

Tip To find the text for license strings, type help license at the MATLAB command
line.

 LicenseName property

1-403

LicenseName property
Class: ModelAdvisor.Task
Package: ModelAdvisor

Product license names required to display and run task

Values

Cell array of product license names

Default: {} (empty cell array)

Description

The LicenseName property specifies a cell array of names for product licenses required
to display and run the check.

When the Model Advisor starts, it tests whether the product license exists. If you do not
meet the license requirements, the Model Advisor does not display the check.

The Model Advisor performs a checkout of the product licenses when you run the custom
check. If you do not have the product licenses available, you see an error message that
the required license is not available.

If you specify ModelAdvisor.Check.LicenseName, the Model Advisor displays the
check when the union of both properties is true.

Tip To find the text for license strings, type help license at the MATLAB command
line.

1 Functions — Alphabetical List

1-404

ListViewVisible property
Class: ModelAdvisor.Check
Package: ModelAdvisor

Status of Explore Result button

Values
false (default)
true

Description

The ListViewVisible property is a Boolean value that sets the status of the Explore
Result button.

true Display the Explore Result button.
false Hide the Explore Result button.

Examples
% add 'Explore Result' button

rec.ListViewVisible = true;

 MAObj property

1-405

MAObj property
Class: ModelAdvisor.FactoryGroup
Package: ModelAdvisor

Model Advisor object

Values

Handle to a Simulink.ModelAdvisor object

Description

The MAObj property specifies a handle to the current Model Advisor object.

1 Functions — Alphabetical List

1-406

MAObj property
Class: ModelAdvisor.Group
Package: ModelAdvisor

Model Advisor object

Values

Handle to Simulink.ModelAdvisor object

Description

The MAObj property specifies a handle to the current Model Advisor object.

 MAObj property

1-407

MAObj property
Class: ModelAdvisor.Task
Package: ModelAdvisor

Model Advisor object

Values

Handle to a Simulink.ModelAdvisor object

Description

The MAObj property specifies the current Model Advisor object.

When adding checks as tasks, the Model Advisor uses the task MAObj property instead of
the check MAObj property.

1 Functions — Alphabetical List

1-408

name property
Class: cv.cvdatagroup
Package: cv

cv.cvdatagroup object name

Values

name

Description

The name property specifies the name of the cv.cvdatagroup object.

Examples
cvdg = cvsim(topModelName);

cvdg.name = 'My_Data_Group';

 Name property

1-409

Name property
Class: ModelAdvisor.Action
Package: ModelAdvisor

Action button label

Values

String

Default: '' (null string)

Description

The Name property specifies the label for the action button. This property is required.

Examples
% define action (fix) operation

myAction = ModelAdvisor.Action;

%Specify a callback function for the action

myAction.setCallbackFcn(@sampleActionCB);

myAction.Name='Fix block fonts';

1 Functions — Alphabetical List

1-410

Name property
Class: ModelAdvisor.InputParameter
Package: ModelAdvisor

Input parameter name

Values

String.

Default: '' (null string)

Description

The Name property specifies the name of the input parameter in the custom check.

Examples
inputParam2 = ModelAdvisor.InputParameter;

inputParam2.Name = 'Standard font size';

inputParam2.Value='12';

inputParam2.Type='String';

inputParam2.Description='sample tooltip';

 Name property

1-411

Name property
Class: ModelAdvisor.ListViewParameter
Package: ModelAdvisor

Drop-down list entry

Values

String

Default: '' (null string)

Description

The Name property specifies an entry in the Show drop-down list in the Model Advisor
Result Explorer.

Examples
% define list view parameters

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter

1 Functions — Alphabetical List

1-412

Result property
Class: ModelAdvisor.Check
Package: ModelAdvisor

Results cell array

Values

Cell array

Default: {} (empty cell array)

Description

The Result property specifies the cell array for storing the results that are returned by
the callback function specified in CallbackHandle.

Tip To set the icon associated with the check, use the Simulink.ModelAdvisor
setCheckResultStatus and setCheckErrorSeverity methods.

 supportExclusion property

1-413

supportExclusion property
Class: ModelAdvisor.Check
Package: ModelAdvisor

Set to support exclusions

Values

Boolean value specifying that the check supports exclusions.
true The check supports exclusions.
false (default). The check does not support exclusions.

Description

The supportExclusion property specifies whether the check supports exclusions.

'true' Check supports exclusions.
'false' Check does not support exclusions.

Examples
% specify that a check supports exclusions

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

rec.supportExclusion = true;

1 Functions — Alphabetical List

1-414

SupportLibrary property
Class: ModelAdvisor.Check
Package: ModelAdvisor

Set to support library models

Values

Boolean value specifying that the check supports library models.
true. The check supports library models.
false (default). The check does not support library models.

Description

The SupportLibrary property specifies whether the check supports library models.

'true' Check supports library models.
'false' Check does not support library models.

Examples
% specify that a check supports library models

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

rec.SupportLibrary = true;

 Title property

1-415

Title property
Class: ModelAdvisor.Check
Package: ModelAdvisor

Name of check

Values

String

Default: '' (null string)

Description

The Title property specifies the name of the check in the Model Advisor. The Model
Advisor displays each custom check in the tree using the title of the check. Therefore, you
should specify a unique title for each check. When you specify the same title for multiple
checks, the Model Advisor generates a warning.

Examples
rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

rec.Title = 'Check Simulink block font';

1 Functions — Alphabetical List

1-416

TitleTips property
Class: ModelAdvisor.Check
Package: ModelAdvisor

Description of check

Values

String

Default: '' (null string)

Description

The TitleTips property specifies a description of the check. Details about the check are
displayed in the right pane of the Model Advisor.

Examples
rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

rec.Title = 'Check Simulink block font';

rec.TitleTips = 'Example style three callback';

 Type property

1-417

Type property
Class: ModelAdvisor.InputParameter
Package: ModelAdvisor

Input parameter type

Values

String.

Default: '' (null string)

Description

The Type property specifies the type of input parameter.

Use the Type property with the Value and Entries properties to define input
parameters.

Valid values are listed in the following table.

Type Data Type Default Value Description

Bool Boolean false A check box
ComboBox Cell array First entry in the

list
A drop-down menu

• Use Entries to define the entries
in the list.

• Use Value to indicate a specific
entry in the menu or to enter a
value not in the list.

Enum Cell array First entry in the
list

A drop-down menu

• Use Entries to define the entries
in the list.

• Use Value to indicate a specific
entry in the list.

1 Functions — Alphabetical List

1-418

Type Data Type Default Value Description

PushButton N/A N/A A button

When you click the button, the
callback function specified by
Entries is called.

String String '' (null string) A text box

Examples
% define input parameters

inputParam1 = ModelAdvisor.InputParameter;

inputParam1.Name = 'Skip font checks.';

inputParam1.Type = 'Bool';

inputParam1.Value = false;

 validate

1-419

validate
Class: Advisor.authoring.DataFile
Package: Advisor.authoring

Validate XML data file used for model configuration check

Syntax

msg = Advisor.authoring.DataFile.validate(dataFile)

Description

msg = Advisor.authoring.DataFile.validate(dataFile) validates the syntax
of the XML data file used for model configuration checks.

Input Arguments

dataFile XML data file name (string)

Examples
dataFile = 'myDataFile.xml';

msg = Advisor.authoring.DataFile.validate(dataFile);

if isempty(msg)

 disp('Data file passed the XSD schema validation.');

else

 disp(msg);

end

See Also
Advisor.authoring.CustomCheck |
Advisor.authoring.generateConfigurationParameterDataFile

1 Functions — Alphabetical List

1-420

How To
• “Create Check for Model Configuration Parameters”

 Value property

1-421

Value property
Class: ModelAdvisor.Check
Package: ModelAdvisor

Status of check

Values
'true' (default)
'false'

Description

The Value property specifies the initial status of the check. When you use the Value
property to specify the initial status of the check, you enable or disable Run This Check
in the Model Advisor window.

If you want to specify the initial status of a check in the By
Product folder, before starting Model Advisor, make sure
ModelAdvisor.Preferences.DeselectByProduct is false.

'true' Check is enabled
'false' Check is disabled

Examples
% hide all checks that do not belong to Demo group

if ~(strcmp(checkCellArray{i}.Group, 'Demo'))

 checkCellArray{i}.Visible = false;

 checkCellArray{i}.Value = false;

end

See Also
ModelAdvisor.Preferences

1 Functions — Alphabetical List

1-422

Value property
Class: ModelAdvisor.InputParameter
Package: ModelAdvisor

Value of input parameter

Values

Depends on the Type property.

Description

The Value property specifies the initial value of the input parameter. This property is
valid only when the Type property is one of the following:

• 'Bool'

• 'String'

• 'Enum'

• 'ComboBox'

Examples
% define input parameters

inputParam1 = ModelAdvisor.InputParameter;

inputParam1.Name = 'Skip font checks.';

inputParam1.Type = 'Bool';

inputParam1.Value = false;

 Value property

1-423

Value property
Class: ModelAdvisor.Task
Package: ModelAdvisor

Status of task

Values
'true' (default) — Initial status of task is enabled
'false' — Initial status of task is disabled

Description

The Value property indicates the initial status of a task—whether it is enabled or
disabled.

When adding checks as tasks, the Model Advisor uses the task Value property instead of
the check Value property.

Examples
MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT1.Value ='false';

1 Functions — Alphabetical List

1-424

slcovmex
Build coverage-compatible MEX-function from C/C++ code

Syntax

slcovmex(sourceFile1,...,sourceFileN)

slcovmex(sourceFile1,...,sourceFileN,-sldv)

slcovmex(sourceFile1,...,sourceFileN,Name,Value)

slcovmex(argumentSet1,...,argumentSetN)

Description

slcovmex(sourceFile1,...,sourceFileN) compiles level 2 C/C++ MEX S-Function
to work with coverage.

slcovmex(sourceFile1,...,sourceFileN,-sldv) compiles level 2 C/C++ MEX S-
Function to work with coverage, and with support enabled for Simulink Design Verifier.

slcovmex(sourceFile1,...,sourceFileN,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

slcovmex(argumentSet1,...,argumentSetN) combines several mex function calls,
each with one set of arguments.

Input Arguments

sourceFile1,...,sourceFileN — One or more file names
Strings

Comma-separated source file names with each name specified as a string.

If the files are not in the current folder, the file names must include the full path or
relative path. Use pwd to find the current folder and cd to change the current folder.

Example: 'file1.c', 'file1.c','file2.c'

 slcovmex

1-425

argumentSet1,...,argumentSetN — One or more sets of mex arguments
Cell arrays of strings

Comma-separated mex argument sets, with each set specified as a cell array.

If you invoke mex multiple times, you can invoke slcovmex once and pass the arguments
for each mex invocation as a cell array of strings.

For example, if you use the following sequence of mex commands:

 mex -c file1.c

 mex -c file2.c

 mex file1.o file2.o -output sfcnOutput

You can replace the sequence with one slcovmex invocation:

slcovmex({'-c','file1.c'},{'-c','file2.c'},{'file1.o','file2.o',

'-output','sfcnOutput'})

Example: {'-c','file1.c'},{'-c','file2.c'},{'file1.o','file2.o','-
output','sfcnOutput'}

-sldv — Option to enable support for Simulink Design Verifier
String

Option to enable support for your compiled MEX-function in Simulink Design Verifier.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: You can use all the name-value pair arguments that are allowed for the
mex function. In addition, you can use the following options that are specific to model
coverage.

'-ifile' — File ignored for coverage
String

File name, specified as a string.
Example: 'myFile.c'

1 Functions — Alphabetical List

1-426

'-ifcn' — Function ignored for coverage
String

Function name, specified as a string.
Example: 'myFunc'

'-idir' — Folder ignored for coverage
String

Folder name, specified as a string.

All files in the folder are ignored for coverage.
Example: 'C:\Libraries\'

More About
• “Basic C MEX S-Function”
• “Templates for C S-Functions”
• “Model Coverage for C and C++ S-Functions”
• “View Coverage Results for C/C++ Code in S-Function Blocks”

Introduced in R2015a

 view

1-427

view
View Model Advisor run results for checks

Syntax

view(CheckResultObj)

Description

view(CheckResultObj) opens a web browser and displays the results of the check
specified by CheckResultObj. CheckResultObj is a ModelAdvisor.CheckResult object
returned by ModelAdvisor.run.

Input Arguments

CheckResultObj

ModelAdvisor.CheckResult object which is a part of a
ModelAdvisor.SystemResult object returned by ModelAdvisor.run.

Examples

View the Model Advisor run results for the first check in the
slvnvdemo_mdladv_config configuration file:
% Identify Model Advisor configuration file.

% Create list of models to run.

fileName = 'slvnvdemo_mdladv_config.mat';

SysList={'sldemo_auto_climatecontrol/Heater Control',...

 'sldemo_auto_climatecontrol/AC Control'};

% Run the Model Advisor.

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

% View the 'Identify unconnected...' check result.

view(SysResultObjArray{1}.CheckResultObjs(1))

1 Functions — Alphabetical List

1-428

Alternatives

“View Model Advisor Report”

More About
• “Automate Model Advisor Check Execution”
• “Archive and View Model Advisor Run Results”

See Also
ModelAdvisor.run | ModelAdvisor.summaryReport | viewReport

 viewReport

1-429

viewReport
View Model Advisor run results for systems

Syntax

viewReport(SysResultObjArray)

viewReport(SysResultObjArray,'MA')

viewReport(SysResultObjArray,'Cmd')

Description

viewReport(SysResultObjArray) opens the Model Advisor Report for the system
specified by SysResultObjArray. SysResultObjArray is a ModelAdvisor.SystemResult
object returned by ModelAdvisor.run.

viewReport(SysResultObjArray,'MA') opens the Model Advisor and displays the
results of the run for the system specified by SysResultObjArray.

viewReport(SysResultObjArray,'Cmd') displays the Model Advisor run summary
in the Command Window for the systems specified by SysResultObjArray.

Input Arguments

SysResultObjArray

ModelAdvisor.SystemResult object returned by ModelAdvisor.run.

Default:

Examples

Open the Model Advisor report for sldemo_auto_climatecontrol/Heater Control.
% Identify Model Advisor configuration file.

% Create list of models to run.

fileName = 'slvnvdemo_mdladv_config.mat';

SysList={'sldemo_auto_climatecontrol/Heater Control',...

1 Functions — Alphabetical List

1-430

 'sldemo_auto_climatecontrol/AC Control'};

% Run the Model Advisor.

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

% Open the Model Advisor report.

viewReport(SysResultObjArray{1})

Open Model Advisor and display results for sldemo_auto_climatecontrol/Heater
Control.
% Identify Model Advisor configuration file.

% Create list of models to run.

fileName = 'slvnvdemo_mdladv_config.mat';

SysList={'sldemo_auto_climatecontrol/Heater Control',...

 'sldemo_auto_climatecontrol/AC Control'};

% Run the Model Advisor.

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

% Open the Model Advisor and display results.

viewReport(SysResultObjArray{1}, 'MA')

Display results in the Command Window for sldemo_auto_climatecontrol/Heater
Control.
% Identify Model Advisor configuration file.

% Create list of models to run.

fileName = 'slvnvdemo_mdladv_config.mat';

SysList={'sldemo_auto_climatecontrol/Heater Control',...

 'sldemo_auto_climatecontrol/AC Control'};

% Run the Model Advisor.

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

% Display results in the Command Window.

viewReport(SysResultObjArray{1}, 'Cmd')

Alternatives

• “View Model Advisor Report”
• “View Results in Model Advisor GUI”
• “View Results in Command Window”

More About
• “Automate Model Advisor Check Execution”

 viewReport

1-431

• “Archive and View Model Advisor Run Results”

See Also
ModelAdvisor.run | ModelAdvisor.summaryReport | view

1 Functions — Alphabetical List

1-432

Visible property
Class: ModelAdvisor.Check
Package: ModelAdvisor

Indicate to display or hide check

Values
'true' (default)
'false'

Description

The Visible property specifies whether the Model Advisor displays the check.

'true' Display the check
'false' Hide the check

Examples
% hide all checks that do not belong to Demo group

if ~(strcmp(checkCellArray{i}.Group, 'Demo'))

 checkCellArray{i}.Visible = false;

 checkCellArray{i}.Value = false;

end

 Visible property

1-433

Visible property
Class: ModelAdvisor.Task
Package: ModelAdvisor

Indicate to display or hide task

Values
'true' (default) — Display task in the Model Advisor
'false' — Hide task

Description

The Visible property specifies whether the Model Advisor displays the task.

Caution When adding checks as tasks, you cannot specify both the task and check
Visible properties, you must specify one or the other. If you specify both properties, the
Model Advisor generates an error when the check Visible property is false.

Examples
MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT1.Visible ='false';

1 Functions — Alphabetical List

1-434

slmetric.metric.registerMetric

Package: slmetric.metric

Register new metric class

Syntax

[MetricID,msg] = slmetric.metric.registerMetric(classname)

Description

Register new metric class using [MetricID,msg] =
slmetric.metric.registerMetric(classname). The new metric class must be on
the MATLAB search path and derived from slmetric.metric.Metric.

Examples

Register New Metric Class

This example shows how to register a new metric class newmetric_class.

Create a metric class newmetric_class.

slmetric.metric.createNewMetricClass('newmetric_class')

Input Arguments

classname — Metric class name
string

New metric class name.
Data Types: char

 slmetric.metric.registerMetric

1-435

Output Arguments

MetricID — Metric ID
string

Unique metric identifier.
Data Types: char

msg — Error message
string

If you cannot register a new class, the function returns an error message.
Data Types: char

See Also
slmetric.metric.Metric | slmetric.metric.createNewMetricClass |
slmetric.metric.refresh | slmetric.metric.unregisterMetric

Introduced in R2016a

1 Functions — Alphabetical List

1-436

slmetric.metric.unregisterMetric
Package: slmetric.metric

Unregister the metric class

Syntax

slmetric.metric.unregisterMetric(MetricID)

Description

Unregister a metric class by using slmetric.metric.unregisterMetric(
MetricID).

Input Arguments

MetricID — Metric ID
string

Unique metric identifier.
Data Types: char

See Also
slmetric.metric.Metric | slmetric.metric.createNewMetricClass |
slmetric.metric.refresh | slmetric.metric.registerMetric

Introduced in R2016a

 slmetric.metric.refresh

1-437

slmetric.metric.refresh
Package: slmetric.metric

Update available model metrics

Syntax

slmetric.metric.refresh()

Description

After manual updates to the metric registration file, update available metrics by using
slmetric.metric.refresh().

See Also
slmetric.metric.Metric | slmetric.metric.createNewMetricClass |
slmetric.metric.registerMetric | slmetric.metric.unregisterMetric

Introduced in R2016a

1 Functions — Alphabetical List

1-438

slmetric.metric.createNewMetricClass
Package: slmetric.metric

Create metric class

Syntax
NewMetricClass = slmetric.metric.createNewMetricClass(classname)

Description
Create metric class in the current working folder by using NewMetricClass =
slmetric.metric.createNewMetricClass(classname). The new metric class
supports the following Advisor.component.Types:

• Model

• SubSystem

• ModelBlock

• Chart

• MATLABFunction

Examples

Create Metric Class

This example shows how to create a metric class newmetric_class.

slmetric.metric.createNewMetricClass('newmetric_class')

The function creates the following newmetric_class.m file in the current working
folder. The file contains an empty metric algorithm method and a constructor
implementation.

slmetric.metric.createNewMetricClass('newmetric_class')

classdef newmetric_class < slmetric.metric.Metric

 % newmetric_class Summary of this metric class goes here

 slmetric.metric.createNewMetricClass

1-439

 % Detailed explanation goes here

 properties

 end

 methods

 function this = newmetric_class()

 this.ID = 'newmetric_class';

 this.ComponentScope = [Advisor.component.Types.ModelRootLevel, ...

 Advisor.component.Types.SubSystem];

 end

 function res = algorithm(this, component)

 res = slmetric.metric.Result();

 res.ComponentID = component.ID;

 res.MetricID = this.ID;

 res.Value = 0;

 end

 end

end

Input Arguments

classname — Metric class name
string

New metric class name.
Data Types: char

Output Arguments

NewMetricClass — New metric class
.m file

Creates a metric class with a classname.m file in the working folder. The classname.m
file contains an empty metric algorithm method and a constructor implementation.

See Also
Advisor.component.Types | slmetric.metric.Metric |
slmetric.metric.registerMetric | slmetric.metric.unregisterMetric

1 Functions — Alphabetical List

1-440

Introduced in R2016a

 exportMetrics

1-441

exportMetrics

Class: slmetric.Engine
Package: slmetric

Export model metrics

Syntax

exportMetrics(slmetric_obj,filename)

exportMetrics(slmetric_obj,filename,filelocation)

Description

Export model metric data to an XML file.

exportMetrics(slmetric_obj,filename) exports an XML filename containing
metric data to your working folder.

exportMetrics(slmetric_obj,filename,filelocation) exports an XML
filename containing metric data to filelocation.

Input Arguments

slmetric_obj — Metric engine object
slmetric.Engine object

Constructed slmetric.Engine object.

filename — XML file name
string

Name of XML file.
Example: 'MyMetrics.xml'

1 Functions — Alphabetical List

1-442

filelocation — File path
string

Path to XML file
Example: 'C:/mywork'

Examples

Export Metrics to Working Folder

This example shows how to export metrics for model vdp to XML file MyMetrics.xml,
and then to your working folder.

% Create an slmetric.Engine object

slmetric_obj = slmetric.Engine();

% Specify model for metric analysis

setAnalysisRoot(slmetric_obj,'Root','vdp','RootType','Model');

% Generate and collect model metrics

execute(slmetric_obj);

rc = getMetrics(slmetric_obj);

% Export metrics to XML file myMetrics.xml

exportMetrics(slmetric_obj,'MyMetrics.xml');

Export Metrics to Specified Location

This example shows how to export metrics for model vdp to XML file MyMetrics.xml in
C:/work.

% Create an slmetric.Engine object

slmetric_obj = slmetric.Engine();

% Specify model for metric analysis

setAnalysisRoot(slmetric_obj,'Root','vdp','RootType','Model');

% Collect model metrics

execute(slmetric_obj);

rc = getMetrics(slmetric_obj);

% Export metrics to XML file myMetrics.xml

 exportMetrics

1-443

exportMetrics(slmetric_obj,'MyMetrics.xml','C:/work');

See Also
slmetric.metric.ResultCollection | slmetric.metric.getAvailableMetrics

More About
• “Model Metrics Results API” on page 4-2
• “Collect Model Metrics Programmatically”
• “Model Metrics”

Introduced in R2016a

2

Block Reference

2 Block Reference

2-2

System Requirements
List system requirements in Simulink diagrams

Library

Simulink Verification and Validation

Description

The System Requirements block lists all the system requirements associated with
the model or subsystem depicted in the current diagram. It does not list requirements
associated with individual blocks in the diagram.

You can place this block anywhere in a diagram. It is not connected to other Simulink
blocks. You can only have one System Requirements block in a diagram.

When you drag the System Requirements block from the Library Browser into your
Simulink diagram, it is automatically populated with the system requirements, as
shown.

 System Requirements

2-3

Each of the listed requirements is an active link to the actual requirements document.
When you double-click on a requirement name, the associated requirements document
opens in its editor window, scrolled to the target location.

If the System Requirements block exists in a diagram, it automatically updates
the requirements listing as you add, modify, or delete requirements for the model or
subsystem.

Dialog Box and Parameters

To access the Block Parameters dialog box for the System Requirements block, right-
click on the System Requirements block and, from the context menu, select Mask
Parameters. The Block Parameters dialog box opens, as shown.

The Block Parameters dialog box for the System Requirements block contains one
parameter.

Block Title
The title of the system requirements list in the diagram. The default title is
System Requirements. You can type a customized title, for example, Engine
Requirements.

3

Model Advisor Checks

• “Simulink Verification and Validation Checks” on page 3-2
• “DO-178C/DO-331 Checks” on page 3-7
• “IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks” on page 3-89
• “MathWorks Automotive Advisory Board Checks” on page 3-136
• “Requirements Consistency Checks” on page 3-216
• “Model Metric Checks” on page 3-224

3 Model Advisor Checks

3-2

Simulink Verification and Validation Checks

In this section...

“Simulink Verification and Validation Checks” on page 3-2
“Modeling Standards Checks” on page 3-3
“Modeling Standards for MAAB” on page 3-3
“Naming Conventions” on page 3-4
“Model Architecture” on page 3-4
“Model Configuration Options” on page 3-4
“Simulink” on page 3-5
“Stateflow” on page 3-5
“MATLAB Functions” on page 3-5

Simulink Verification and Validation Checks

Simulink Verification and Validation checks facilitate designing and troubleshooting
models from which code is generated for applications that must meet safety or mission-
critical requirements, modeling guidelines, or requirements consistency.

The Model Advisor performs a checkout of the Simulink Verification and Validation
license when you run the Simulink Verification and Validation checks.

For descriptions of the modeling standards checks, see

• “DO-178C/DO-331 Checks” on page 3-7
• “IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks” on page 3-89
• “MathWorks Automotive Advisory Board Checks” on page 3-136

For descriptions of the requirements consistency checks, see “Requirements Consistency
Checks” on page 3-216.

See Also

• “Run Model Checks”
• “Simulink Checks”

 Simulink Verification and Validation Checks

3-3

• “Simulink Coder Checks”

Modeling Standards Checks

Modeling standards checks facilitate designing and troubleshooting models from which
code is generated for applications that must meet safety or mission-critical requirements
or MathWorks® Automotive Advisory Board (MAAB) modeling guidelines.

The Model Advisor performs a checkout of the Simulink Verification and Validation
license when you run the modeling standards checks.

For descriptions of the modeling standards checks, see

• “DO-178C/DO-331 Checks” on page 3-7
• “IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks” on page 3-89
• “MathWorks Automotive Advisory Board Checks” on page 3-136

See Also

• “Run Model Checks”
• “Simulink Checks”
• “Simulink Coder Checks”

Modeling Standards for MAAB

Group of MathWorks Automotive Advisory Board (MAAB) checks. MAAB checks
facilitate designing and troubleshooting models from which code is generated for
automotive applications.

The Model Advisor performs a checkout of the Simulink Verification and Validation
license when you run the modeling standards for MAAB checks.

See Also

• “Run Model Checks”
• “Simulink Checks”
• “Simulink Coder Checks”
• “MAAB Control Algorithm Modeling” guidelines

3 Model Advisor Checks

3-4

Naming Conventions

Group of MathWorks Automotive Advisory Board (MAAB) checks related to naming
conventions.

The Model Advisor performs a checkout of the Simulink Verification and Validation
license when you run the naming conventions checks.

See Also

• “Run Model Checks”
• “Simulink Checks”
• “Simulink Coder Checks”
• “MAAB Control Algorithm Modeling” guidelines

Model Architecture

Group of MathWorks Automotive Advisory Board (MAAB) checks related to model
architecture.

The Model Advisor performs a checkout of the Simulink Verification and Validation
license when you run the model architecture checks.

See Also

• “Run Model Checks”
• “Simulink Checks”
• “Simulink Coder Checks”
• “MAAB Control Algorithm Modeling” guidelines

Model Configuration Options

Group of MathWorks Automotive Advisory Board (MAAB) checks related to model
configuration options.

The Model Advisor performs a checkout of the Simulink Verification and Validation
license when you run the model configuration options checks.

See Also

• “Run Model Checks”

 Simulink Verification and Validation Checks

3-5

• “Simulink Checks”
• “Simulink Coder Checks”
• “MAAB Control Algorithm Modeling” guidelines

Simulink

Group of MathWorks Automotive Advisory Board (MAAB) checks related to the Simulink
product.

The Model Advisor performs a checkout of the Simulink Verification and Validation
license when you run the MAAB checks related to the Simulink product.

See Also

• “Run Model Checks”
• “Simulink Checks”
• “Simulink Coder Checks”
• “MAAB Control Algorithm Modeling” guidelines

Stateflow

Group of MathWorks Automotive Advisory Board (MAAB) checks related to the Stateflow
product.

The Model Advisor performs a checkout of the Simulink Verification and Validation
license when you run the MAAB checks related to the Stateflow product.

See Also

• “Run Model Checks”
• “Simulink Checks”
• “Simulink Coder Checks”
• “MAAB Control Algorithm Modeling” guidelines

MATLAB Functions

MathWorks Automotive Advisory Board (MAAB) checks related to MATLAB functions.

3 Model Advisor Checks

3-6

The Model Advisor performs a checkout of the Simulink Verification and Validation
license when you run the MAAB checks related to MATLAB functions.

See Also

• “Run Model Checks”
• “Simulink Checks”
• “Simulink Coder Checks”
• “MAAB Control Algorithm Modeling” guidelines

 DO-178C/DO-331 Checks

3-7

DO-178C/DO-331 Checks

In this section...

“DO-178C/DO-331 Checks” on page 3-8
“Check model object names” on page 3-9
“Check safety-related optimization settings” on page 3-12
“Check safety-related diagnostic settings for solvers” on page 3-16
“Check safety-related diagnostic settings for sample time” on page 3-19
“Check safety-related diagnostic settings for signal data” on page 3-21
“Check safety-related diagnostic settings for parameters” on page 3-25
“Check safety-related diagnostic settings for data used for debugging” on page 3-28
“Check safety-related diagnostic settings for data store memory” on page 3-30
“Check safety-related diagnostic settings for type conversions” on page 3-32
“Check safety-related diagnostic settings for signal connectivity” on page 3-34
“Check safety-related diagnostic settings for bus connectivity” on page 3-36
“Check safety-related diagnostic settings that apply to function-call connectivity” on
page 3-38
“Check safety-related diagnostic settings for compatibility” on page 3-40
“Check safety-related diagnostic settings for model initialization” on page 3-41
“Check safety-related diagnostic settings for model referencing” on page 3-44
“Check safety-related model referencing settings” on page 3-47
“Check safety-related code generation settings” on page 3-49
“Check safety-related diagnostic settings for saving” on page 3-55
“Check for blocks that do not link to requirements” on page 3-57
“Check state machine type of Stateflow charts” on page 3-58
“Check Stateflow charts for ordering of states and transitions” on page 3-60
“Check Stateflow debugging options” on page 3-62
“Check usage of lookup table blocks” on page 3-64
“Check MATLAB Code Analyzer messages” on page 3-66
“Check MATLAB code for global variables” on page 3-68

3 Model Advisor Checks

3-8

In this section...

“Check for inconsistent vector indexing methods” on page 3-70
“Check for MATLAB Function interfaces with inherited properties” on page 3-71
“Check MATLAB Function metrics” on page 3-73
“Check for blocks not recommended for C/C++ production code deployment” on page
3-75
“Check for variant blocks with 'Generate preprocessor conditionals' active” on page
3-76
“Check Stateflow charts for uniquely defined data objects” on page 3-77
“Check usage of Math Operations blocks” on page 3-78
“Check usage of Signal Routing blocks” on page 3-81
“Check usage of Logic and Bit Operations blocks” on page 3-82
“Check usage of Ports and Subsystems blocks” on page 3-84
“Display model version information” on page 3-88

DO-178C/DO-331 Checks

DO-178C/DO-331 checks facilitate designing and troubleshooting models from which code
is generated for applications that must meet safety or mission-critical requirements.

The Model Advisor performs a checkout of the Simulink Verification and Validation
license when you run the DO-178C/DO-331 checks.

See Also

• “Simulink Checks”
• “Simulink Coder Checks”
• Radio Technical Commission for Aeronautics (RTCA) for information on the DO-178C

Software Considerations in Airborne Systems and Equipment Certification and
related standards

http://www.rtca.org/

 DO-178C/DO-331 Checks

3-9

Check model object names

Check ID: mathworks.do178.hisl_0032

Check model object names.

Description

This check verifies that the following model object names comply with your own modeling
guidelines or the high-integrity modeling guidelines. The check also verifies that the
model object does not use a reserved name.

• Blocks
• Signals
• Parameters
• Busses
• Stateflow objects

Reserved names:

• MATLAB keywords
• C keywords
• true, false
• int8 , uint8
• int16, uint16
• int32, uint32
• single, double

Available with Simulink Verification and Validation.

Input Parameters

To specify the naming standard and model object names that the check flags, use the
Model Advisor Configuration Editor.

1 Open the Model Configuration Editor and navigate to Check model object names.
In the Input Parameters pane, for each of the model objects, select one of the
following:

3 Model Advisor Checks

3-10

• MAAB to use the MAAB naming standard. When you select MAAB, the check uses
the regular expression (^.{32,}$)|([^a-zA-Z_0-9])|(^\d)|(^)|(__)|
(^_)|(_$) to verify that names:

• Use these characters: a-z, A-Z, 0-9, and the underscore (_).
• Do not start with a number.
• Do not use underscores at the beginning or end of a string.
• Do not use more than one consecutive underscore.
• Use strings that are less than 32 characters.

• Custom to use your own naming standard. When you select Custom, you can
enter your own Regular expression for prohibited <model object> names.
For example, if you want to allow more than one consecutive underscore, enter
(^.{32,}$)|([^a-zA-Z_0-9])|(^\d)|(^)|(^_)|(_$)

• None if you do not want the check to verify the model object name
2 Click Apply.
3 Save the configuration. When you run the check using this configuration, the check

uses the input parameters that you specified.

Results and Recommended Actions

Condition Recommended Action

The model object names do not comply with
the naming standard specified in the input
parameters.

Update the model object names to comply with your
own guidelines or the high-integrity guidelines.

Capabilities and Limitations

• Does not run on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• “hisl_0032: Model object names”
• MAAB guideline, Version 3.0: jc_0201: Usable characters for Subsystem names

 DO-178C/DO-331 Checks

3-11

• MAAB guideline, Version 3.0: jc_0211: Usable characters for Inport blocks and
Outport blocks

• MAAB guideline, Version 3.0: jc_0221: Usable characters for signal line names
• MAAB guideline, Version 3.0: jc_0231: Usable characters for block names
• MAAB guideline, Version 3.0: na_0030: Usable characters for Simulink Bus names

3 Model Advisor Checks

3-12

Check safety-related optimization settings

Check ID: mathworks.do178.OptionSet

Check model configuration for optimization settings that can impact safety.

Description

This check verifies that model optimization configuration parameters are set optimally
for generating code for a safety-related application. Although highly optimized code is
desirable for most real-time systems, some optimizations can have undesirable side
effects that impact safety.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Block reduction optimization is selected.
This optimization can remove blocks from
generated code, resulting in requirements
without associated code and violations for
traceability requirements. (See DO-331,
Section MB.6.3.4.e—Source code is traceable
to low-level requirements.)

Clear the Block reduction parameter on the All
Parameters tab of the Configuration Parameters
dialog box or set the parameter BlockReduction
to off.

Implementation of logic signals as Boolean
data is cleared. Strong data typing is
recommended for safety-related code. (See
DO-331, Section MB.6.3.1.e—High-level
requirements conform to standards, DO-331,
Section MB.6.3.2.e—Low-level requirements
conform to standards, and MISRA C:2012,
Rule 10.1.)

Select Implement logic signals as boolean data
(vs. double) on the All Parameters tab in the
Configuration Parameters dialog box or set the
parameter BooleanDataType to on.

The model includes blocks that depend on
elapsed or absolute time and is configured to
minimize the amount of memory allocated
for the timers. Such a configuration limits
the number of days the application can
execute before a timer overflow occurs.
Many aerospace products are powered on

Set Application lifespan (days) on the
Optimization pane in the Configuration
Parameters dialog box or set the parameter
LifeSpan to inf.

 DO-178C/DO-331 Checks

3-13

Condition Recommended Action

continuously and timers should not assume
a limited lifespan. (See DO-331, Section
MB.6.3.1.g—Algorithms are accurate and
DO-331, Section MB.6.3.2.g—Algorithms are
accurate.)
The optimization that suppresses the
generation of initialization code for root-level
inports and outports that are set to zero is
selected. For safety-related code, you should
explicitly initialize all variables. (See DO-331,
Section MB.6.3.3.b—Software architecture is
consistent.)

If you have an Embedded Coder license, and you
are using an ERT-based system target file, clear
the Remove root level I/O zero initialization
check box on the Optimization pane in the
Configuration Parameters dialog box or set the
parameter ZeroExternalMemoryAtStartup
to on. Alternatively, integrate external, hand-
written code that initializes all I/O variables to zero
explicitly.

The optimization that suppresses the
generation of initialization code for internal
work structures, such as block states and
block outputs that are set to zero, is selected.
For safety-related code, you should explicitly
initialize every variable. (See DO-331,
Section MB.6.3.3.b—Software architecture is
consistent.)

If you have an Embedded Coder license, and you
are using an ERT-based system target file, clear
the Remove internal data zero initialization
check box on the Optimization pane in the
Configuration Parameters dialog box or set the
parameter ZeroInternalMemoryAtStartup to
on. Alternatively, integrate external, hand-written
code that initializes every state variable to zero
explicitly.

The optimization that suppresses generation
of code resulting from floating-point to
integer conversions that wrap out-of-
range values is cleared. You must avoid
overflows for safety-related code. When
this optimization is off and your model
includes blocks that disable the Saturate
on overflow parameter, the code generator
wraps out-of-range values for those blocks.
This can result in unreachable and, therefore,
untestable code. (See DO-331, Section
MB.6.3.1.g—Algorithms are accurate and
DO-331, Section MB.6.3.2.g—Algorithms are
accurate.)

If you have a Simulink Coder™ license, select
Remove code from floating-point to integer
conversions that wraps out-of-range values
on the Optimization pane in the Configuration
Parameters dialog box or set the parameter
EfficientFloat2IntCast to on.

3 Model Advisor Checks

3-14

Condition Recommended Action

The optimization that suppresses generation
of code that guards against division by zero
for fixed-point data is selected. You must
avoid division-by-zero exceptions in safety-
related code. (See DO-331, Section MB.6.3.1.g
—Algorithms are accurate, DO-331, Section
MB.6.3.2.g—Algorithms are accurate, and
MISRA C:2012, Dir 4.1.)

If you have an Embedded Coder license, and
you are using an ERT-based system target file,
clear the Remove code that protects against
division arithmetic exceptions check box on
the Optimization pane in the Configuration
Parameters dialog box or set the parameter
NoFixptDivByZeroProtection to off.

The optimization that uses the specified
minimum and maximum values for signals
and parameters to optimize the generated
code is selected. This might result in
requirements without traceable code. (See
DO-331 Section MB.6.3.4.e - Source code is
traceable to low-level requirements.)

If you have an Embedded Coder license, and
you are using an ERT-based system target
file, clear the Optimize using the specified
minimum and maximum values check box
on the Optimization pane in the Configuration
Parameters dialog box.

Action Results

Clicking Modify Settings configures model optimization settings that can impact safety.

Subchecks depend on the results of the subchecks noted with D in the results table in the
Model Advisor window.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• “Optimization Pane: General” in the Simulink graphical user interface documentation
• “Optimize Generated Code Using Minimum and Maximum Values” in the Embedded

Coder documentation
• Radio Technical Commission for Aeronautics (RTCA) for information on the DO-178C

Software Considerations in Airborne Systems and Equipment Certification and
related standards

• “hisl_0018: Usage of Logical Operator block”

http://www.rtca.org/

 DO-178C/DO-331 Checks

3-15

• “hisl_0045: Configuration Parameters > Optimization > Implement logic signals as
Boolean data (vs. double)”

• “hisl_0046: Configuration Parameters > Optimization > Block reduction”
• “hisl_0048: Configuration Parameters > Optimization > Application lifespan (days)”
• “hisl_0052: Configuration Parameters > Optimization > Data initialization”
• “hisl_0053: Configuration Parameters > Optimization > Remove code from floating-

point to integer conversions that wraps out-of-range values”
• “hisl_0054: Configuration Parameters > Optimization > Remove code that protects

against division arithmetic exceptions”

3 Model Advisor Checks

3-16

Check safety-related diagnostic settings for solvers

Check ID: mathworks.do178.SolverDiagnosticsSet

Check model configuration for diagnostic settings that apply to solvers and that can
impact safety.

Description

This check verifies that model diagnostic configuration parameters pertaining to solvers
are set optimally for generating code for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic for detecting automatic
breakage of algebraic loops is set to none or
warning. The breaking of algebraic loops can
affect the predictability of the order of block
execution. For safety-related applications,
a model developer needs to know when
such breaks occur. (See DO-331, Section
MB.6.3.3.e – Software architecture conforms
to standards.)

Set Algebraic loop on the Diagnostics > Solver
pane in the Configuration Parameters dialog
box or set the parameter AlgebraicLoopMsg to
error. Consider breaking such loops explicitly with
Unit Delay blocks so that the execution order is
predictable. At a minimum, verify that the results
of loops breaking automatically are acceptable.

The diagnostic for detecting automatic
breakage of algebraic loops for Model blocks,
atomic subsystems, and enabled subsystems
is set to none or warning. The breaking of
algebraic loops can affect the predictability
of the order of block execution. For safety-
related applications, a model developer
needs to know when such breaks occur.
(See DO-331, Section MB.6.3.3.e – Software
architecture conforms to standards.)

Set Minimize algebraic loop on the
Diagnostics > Solver pane in the Configuration
Parameters dialog box or set the parameter
ArtificialAlgebraicLoopMsg to error.
Consider breaking such loops explicitly with
Unit Delay blocks so that the execution order is
predictable. At a minimum, verify that the results
of loops breaking automatically are acceptable.

The diagnostic for detecting potential conflict
in block execution order is set to none or
warning. For safety-related applications,

Set Block priority violation on the
Diagnostics > Solver pane in the Configuration
Parameters dialog box or set the parameter
BlockPriorityViolationMsg to error.

 DO-178C/DO-331 Checks

3-17

Condition Recommended Action

block execution order must be predictable.
A model developer needs to know when
conflicting block priorities exist. (See DO-331,
Section MB.6.3.3.b – Software architecture is
consistent.)
The diagnostic for detecting whether a model
contains an S-function that has not been
specified explicitly to inherit sample time
is set to none or warning. These settings
can result in unpredictable behavior. A
model developer needs to know when such
an S-function exists in a model so it can be
modified to produce predictable behavior.
(See DO-331, Section MB.6.3.3.e – Software
architecture conforms to standards.)

Set Unspecified inheritability of sample time
on the All Parameters pane in the Configuration
Parameters dialog box or set the parameter
UnknownTsInhSupMsg to error.

The diagnostic for detecting whether the
Simulink software automatically modifies
the solver, step size, or simulation stop time
is set to none or warning. Such changes
can affect the operation of generated code.
For safety-related applications, it is better
to detect such changes so a model developer
can explicitly set the parameters to known
values. (See DO-331, Section MB.6.3.3.e –
Software architecture conforms to standards.)

Set Automatic solver parameter selection
on the Diagnostics > Solver pane in the
Configuration Parameters dialog box or set the
parameter SolverPrmCheckMsg to error.

The diagnostic for detecting when a name
is used for more than one state in the
model is set to none. State names within a
model should be unique. For safety-related
applications, it is better to detect name
clashes so a model developer can fix them.
(See DO-331, Section MB.6.3.3.b – Software
architecture is consistent.)

Set State name clash on the Diagnostics
> Solver pane in the Configuration
Parameters dialog box or set the parameter
StateNameClashWarn to warning.

Action Results

Clicking Modify Settings configures model diagnostic settings that apply to solvers and
that can impact safety.

3 Model Advisor Checks

3-18

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• “Diagnostics Pane: Solver” in the Simulink graphical user interface documentation
• “View Diagnostics” in the Simulink documentation
• Radio Technical Commission for Aeronautics (RTCA) for information on the DO-178C

Software Considerations in Airborne Systems and Equipment Certification and
related standards

• “hisl_0043: Configuration Parameters > Diagnostics > Solver”

http://www.rtca.org/

 DO-178C/DO-331 Checks

3-19

Check safety-related diagnostic settings for sample time

Check ID: mathworks.do178.SampleTimeDiagnosticsSet

Check model configuration for diagnostic settings that apply to sample time and that can
impact safety.

Description

This check verifies that model diagnostic configuration parameters pertaining to sample
times are set optimally for generating code for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic for detecting when a source
block, such as a Sine Wave block, inherits a
sample time (specified as -1) is set to none or
warning. The use of inherited sample times
for a source block can result in unpredictable
execution rates for the source block and
blocks connected to it. For safety-related
applications, source blocks should have
explicit sample times to prevent incorrect
execution sequencing. (See DO-331, Section
MB.6.3.3.e – Software architecture conforms
to standards.)

Set Source block specifies -1 sample time on
the Diagnostics > Sample Time pane in the
Configuration Parameters dialog box or set the
parameter InheritedTslnSrcMsg to error.

The diagnostic for detecting invalid rate
transitions between two blocks operating in
multitasking mode is set to none or warning.
Such rate transitions should not be used
for embedded real-time code. (See DO-331,
Section MB.6.3.3.b – Software architecture is
consistent.)

Set Multitask rate transition on the
Diagnostics > Sample Time pane in the
Configuration Parameters dialog box or set the
parameter MultiTaskRateTransMsg to error.

The diagnostic for detecting subsystems
that can cause data corruption or
nondeterministic behavior is set to none
or warning. This diagnostic detects

Set Multitask conditionally executed
subsystem on the Diagnostics > Sample Time
pane in the Configuration Parameters dialog box or

3 Model Advisor Checks

3-20

Condition Recommended Action

whether conditionally executed multirate
subsystems (enabled, triggered, or function-
call subsystems) operate in multitasking
mode. Such subsystems can corrupt data
and behave unpredictably in real-time
environments that allow preemption. (See
DO-331, Section MB.6.3.3.b – Software
architecture is consistent.)

set the parameter MultiTaskCondExecSysMsg to
error.

The diagnostic for checking sample
time consistency between a Signal
Specification block and the connected
destination block is set to none or warning.
An over-specified sample time can result
in an unpredictable execution rate. (See
DO-331, Section MB.6.3.3.e – Software
architecture conforms to standards.)

Set Enforce sample times specified by Signal
Specification blocks on the Diagnostics
> Sample Time pane in the Configuration
Parameters dialog box or set the parameter
SigSpecEnsureSampleTimeMsg to error.

Action Results

Clicking Modify Settings configures model diagnostic settings that apply to sample
time and that can impact safety.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• “Diagnostics Pane: Sample Time” in the Simulink graphical user interface
documentation

• “View Diagnostics” in the Simulink documentation
• Radio Technical Commission for Aeronautics (RTCA) for information on the DO-178C

Software Considerations in Airborne Systems and Equipment Certification and
related standards

• “hisl_0044: Configuration Parameters > Diagnostics > Sample Time”

http://www.rtca.org

 DO-178C/DO-331 Checks

3-21

Check safety-related diagnostic settings for signal data

Check ID: mathworks.do178.DataValiditySignalsDiagnosticsSet

Check model configuration for diagnostic settings that apply to signal data and that can
impact safety.

Description

This check verifies that model diagnostic configuration parameters pertaining to signal
data are set optimally for generating code for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that specifies how the Simulink
software resolves signals associated with
Simulink.Signal objects in the MATLAB
workspace is set to Explicit and implicit
or Explicit and warn implicit. For
safety-related applications, model developers
should be required to define signal resolution
explicitly. (See DO-331, Section MB.6.3.3.b –
Software architecture is consistent.)

Set Signal resolution on the Diagnostics
> Data Validity pane in the Configuration
Parameters dialog box or set the parameter
SignalResolutionControl to Explicit only.
This provides predictable operation by requiring
users to define each signal and block setting that
must resolve to Simulink.Signal objects in the
workspace.

The Product block diagnostic that detects
a singular matrix while inverting one of its
inputs in matrix multiplication mode is set
to none or warning. Division by a singular
matrix can result in numeric exceptions
when executing generated code. This is not
acceptable in safety-related systems. (See
DO-331, Section MB.6.3.1.g – Algorithms
are accurate, DO-331, Section MB.6.3.2.g –
Algorithms are accurate, and MISRA C:2012,
Dir 4.1.)

Set Division by singular matrix on the
Diagnostics > Data Validity pane in the
Configuration Parameters dialog box or set the
parameter CheckMatrixSingularityMsg to
error.

The diagnostic that detects when the Simulink
software cannot infer the data type of a signal
during data type propagation is set to none

Set Underspecified data types on the
Diagnostics > Data Validity pane in the
Configuration Parameters dialog box or set the

3 Model Advisor Checks

3-22

Condition Recommended Action

or warning. For safety-related applications,
model developers must verify the data types
of signals. (See DO-331, Section MB.6.3.1.e –
High-level requirements conform to standards,
and DO-331, Section MB.6.3.2.e – Low-level
requirements conform to standards.)

parameter UnderSpecifiedDataTypeMsg to
error.

The diagnostic that detects whether the value
of a signal is too large to be represented by the
signal data type is set to none or warning.
Undetected numeric overflows can result in
unexpected application behavior. (See DO-331,
Section MB.6.3.1.g – Algorithms are accurate,
DO-331, Section MB.6.3.2.g – Algorithms are
accurate, and MISRA C:2012, Dir 4.1.)

Set Wrap on overflow on the Diagnostics
> Data Validity pane in the Configuration
Parameters dialog box or set the parameter
IntegerOverflowMsg to error.

The diagnostic that detects whether the value
of a signal is too large to be represented by the
signal data type, resulting in a saturation, is
set to none or warning. Undetected numeric
overflows can result in unexpected application
behavior. (See DO-331, Section MB.6.3.1.g
– Algorithms are accurate, DO-331, Section
MB.6.3.2.g – Algorithms are accurate, and
MISRA C:2012, Dir 4.1.)

Set Saturate on overflow on the Diagnostics
> Data Validity pane in the Configuration
Parameters dialog box or set the parameter
IntegerSaturationMsg to error.

The diagnostic that detects when the value
of a block output signal is Inf or NaN at
the current time step is set to none or
warning. When this type of block output
signal condition occurs, numeric exceptions
can result, and numeric exceptions are not
acceptable in safety-related applications. (See
DO-331, Section MB.6.3.1.g – Algorithms
are accurate, DO-331, Section MB.6.3.2.g –
Algorithms are accurate, and MISRA C:2012,
Dir 4.1.)

Set Inf or NaN block output on the
Diagnostics > Data Validity pane in the
Configuration Parameters dialog box or set the
parameter SignalInfNanChecking to error.

 DO-178C/DO-331 Checks

3-23

Condition Recommended Action

The diagnostic that detects Simulink object
names that begin with rt is set to none or
warning. This diagnostic prevents name
clashes with generated signal names that have
an rt prefix. (See DO-331, Section MB.6.3.1.e
– High-level requirements conform to
standards, and DO-331, Section MB.6.3.2.e –
Low-level requirements conform to standards.)

Set "rt" prefix for identifiers on the
Diagnostics > Data Validity pane in the
Configuration Parameters dialog box or set the
parameter RTPrefix to error.

The diagnostic that detects simulation range
checking is set to none or warning. This
diagnostic detects when signals exceed their
specified ranges during simulation. Simulink
compares the signal values that a block
outputs with the specified range and the block
data type. (See DO-331, Section MB.6.3.1.g
– Algorithms are accurate, DO-331, Section
MB.6.3.2.g – Algorithms are accurate, and
MISRA C:2012, Dir 4.1.)

Set Simulation range checking on the
Diagnostics > Data Validity pane in the
Configuration Parameters dialog box or set the
parameter SignalRangeChecking to error.

Action Results

Clicking Modify Settings configures model diagnostic settings that apply to signal data
and that can impact safety.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• “Diagnostics Pane: Data Validity” in the Simulink graphical user interface
documentation

• “View Diagnostics” in the Simulink documentation
• Radio Technical Commission for Aeronautics (RTCA) for information on the DO-178C

Software Considerations in Airborne Systems and Equipment Certification and
related standards

• “hisl_0005: Usage of Product blocks”

http://www.rtca.org

3 Model Advisor Checks

3-24

 DO-178C/DO-331 Checks

3-25

Check safety-related diagnostic settings for parameters

Check ID: mathworks.do178.DataValidityParamDiagnosticsSet

Check model configuration for diagnostic settings that apply to parameters and that can
impact safety.

Description

This check verifies that model diagnostic configuration parameters pertaining to
parameters are set optimally for generating code for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects when a parameter
downcast occurs is set to none or warning.
A downcast to a lower signal range can result
in numeric overflows of parameters, resulting
in unexpected behavior. (See DO-331, Section
MB.6.3.1.g – Algorithms are accurate and
DO-331, Section MB.6.3.2.g – Algorithms are
accurate.)

Set Detect downcast on the Diagnostics
> Data Validity pane in the Configuration
Parameters dialog box or set the parameter
ParameterDowncastMsg to error.

The diagnostic that detects when a parameter
underflow occurs is set to none or warning.
When the data type of a parameter does not
have enough resolution, the parameter value
is zero instead of the specified value. This
can lead to incorrect operation of generated
code. (See DO-331, Section MB.6.3.1.g –
Algorithms are accurate and DO-331, Section
MB.6.3.2.g – Algorithms are accurate.)

Set Detect underflow on the Diagnostics
> Data Validity pane in the Configuration
Parameters dialog box or set the parameter
ParameterUnderflowMsg to error.

The diagnostic that detects when a parameter
overflow occurs is set to none or warning.
Numeric overflows can result in unexpected
application behavior and should be detected
and fixed in safety-related applications. (See
DO-331, Section MB.6.3.1.g – Algorithms are

Set Detect overflow on the Diagnostics
> Data Validity pane in the Configuration
Parameters dialog box or set the parameter
ParameterOverflowMsg to error.

3 Model Advisor Checks

3-26

Condition Recommended Action

accurate and DO-331, Section MB.6.3.2.g –
Algorithms are accurate.)
The diagnostic that detects when a parameter
loses precision is set to none or warning.
Not detecting such errors can result in a
parameter being set to an incorrect value
in the generated code. (See DO-331, Section
MB.6.3.1.g – Algorithms are accurate and
DO-331, Section MB.6.3.2.g – Algorithms are
accurate.)

Set Detect precision loss on the Diagnostics
> Data Validity pane in the Configuration
Parameters dialog box or set the parameter
ParameterPrecisionLossMsg to error.

The diagnostic that detects when an
expression with tunable variables is reduced
to its numerical equivalent is set to none
or warning. This can result in a tunable
parameter unexpectedly not being tunable
in generated code. (See DO-331, Section
MB.6.3.1.g – Algorithms are accurate and
DO-331, Section MB.6.3.2.g – Algorithms are
accurate.)

Set Detect loss of tunability on the Diagnostics
> Data Validity pane in the Configuration
Parameters dialog box or set the parameter
ParameterTunabilityLossMsg to error.

Action Results

Clicking Modify Settings configures model diagnostic settings that apply to parameters
and that can impact safety.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• “Diagnostics Pane: Data Validity” in the Simulink graphical user interface
documentation

• “View Diagnostics” in the Simulink documentation
• Radio Technical Commission for Aeronautics (RTCA) for information on the

DO-178C, Software Considerations in Airborne Systems and Equipment Certification
and related standards

http://www.rtca.org

 DO-178C/DO-331 Checks

3-27

• “hisl_0302: Configuration Parameters > Diagnostics > Data Validity > Parameters”

3 Model Advisor Checks

3-28

Check safety-related diagnostic settings for data used for debugging

Check ID: mathworks.do178.DataValidityDebugDiagnosticsSet

Check model configuration for diagnostic settings that apply to data used for debugging
and that can impact safety.

Description

This check verifies that model diagnostic configuration parameters pertaining to
debugging are set optimally for generating code for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that enables model
verification blocks is set to Use local
settings or Enable all. Such blocks
should be disabled because they are assertion
blocks, which are for verification only. Model
developers should not use assertions in
embedded code.

In the Configuration Parameters dialog
box, on the All Parameters tab, set Model
Verification block enabling or set the parameter
AssertControl to Disable All.

Action Results

Clicking Modify Settings configures model diagnostic settings that apply to data used
for debugging and that can impact safety.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• DO-331, Section MB.6.3.1.e – High-level requirements conform to standards
• DO-331, Section MB.6.3.2.e – Low-level requirements conform to standards
• “Diagnostics Pane: Data Validity” in the Simulink graphical user interface

documentation

 DO-178C/DO-331 Checks

3-29

• Radio Technical Commission for Aeronautics (RTCA) for information on the DO-178C
Software Considerations in Airborne Systems and Equipment Certification and
related standards

• “hisl_0305: Configuration Parameters > Diagnostics > Debugging”

http://www.rtca.org/

3 Model Advisor Checks

3-30

Check safety-related diagnostic settings for data store memory

Check ID: mathworks.do178.DataStoreMemoryDiagnosticsSet

Check model configuration for diagnostic settings that apply to data store memory and
that can impact safety.

Description

This check verifies that model diagnostic configuration parameters pertaining to data
store memory are set optimally for generating code for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects whether the
model attempts to read data from a data
store in which it has not stored data in the
current time step is set to a value other than
Enable all as errors. Reading data
before it is written can result in use of stale
data or data that is not initialized.

Set Detect read before write on the Diagnostics
> Data Validity pane in the Configuration
Parameters dialog box or set the parameter
ReadBeforeWriteMsg to Enable all as
errors.

The diagnostic that detects whether the
model attempts to store data in a data store,
after previously reading data from it in the
current time step, is set to a value other than
Enable all as errors. Writing data after
it is read can result in use of stale or incorrect
data.

Set Detect write after read on the Diagnostics
> Data Validity pane in the Configuration
Parameters dialog box or set the parameter
WriteAfterReadMsg to Enable all as errors.

The diagnostic that detects whether the
model attempts to store data in a data store
twice in succession in the current time step
is set to a value other than Enable all as
errors. Writing data twice in one time step
can result in unpredictable data.

Set Detect write after write on the Diagnostics
> Data Validity pane in the Configuration
Parameters dialog box or set the parameter
WriteAfterWriteMsg to Enable all as
errors.

The diagnostic that detects when one task
reads data from a Data Store Memory

Set Multitask data store on the Diagnostics
> Data Validity pane in the Configuration

 DO-178C/DO-331 Checks

3-31

Condition Recommended Action

block to which another task writes data is
set to none or warning. Reading or writing
data in different tasks in multitask mode can
result in corrupted or unpredictable data.

Parameters dialog box or set the parameter
MultiTaskDSMMsg to error.

Action Results

Clicking Modify Settings configures model diagnostic settings that apply to data store
memory and that can impact safety.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• DO-331, Section MB.6.3.3.b – Software architecture is consistent
• “Diagnostics Pane: Data Validity” in the Simulink graphical user interface

documentation
• Radio Technical Commission for Aeronautics (RTCA) for information on the DO-178C

Software Considerations in Airborne Systems and Equipment Certification and
related standards

• “hisl_0013: Usage of data store blocks”

http://www.rtca.org/

3 Model Advisor Checks

3-32

Check safety-related diagnostic settings for type conversions

Check ID: mathworks.do178.TypeConversionDiagnosticsSet

Check model configuration for diagnostic settings that apply to type conversions and that
can impact safety.

Description

This check verifies that model diagnostic configuration parameters pertaining to type
conversions are set optimally for generating code for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects Data Type
Conversion blocks used where there is not
type conversion is set to none. The Simulink
software might remove unnecessary Data
Type Conversion blocks from generated
code. This might result in requirements
without corresponding code. The removal
of such blocks need to be detected so model
developers can remove the unnecessary
blocks explicitly. (See DO-331, Section
MB.6.3.1.g – Algorithms are accurate and
DO-331, Section MB.6.3.2.g – Algorithms are
accurate.)

Set Unnecessary type conversions on the
Diagnostics > Type Conversion pane in the
Configuration Parameters dialog box or set the
parameter UnnecessaryDatatypeConvMsg to
warning.

The diagnostic that detects vector-to-matrix
or matrix-to-vector conversions at block
inputs is set to none or warning. When the
Simulink software automatically converts
between vector and matrix dimensions,
unintended operations or unpredictable
behavior can occur. (See DO-331, Section
MB.6.3.1.g – Algorithms are accurate and
DO-331, Section MB.6.3.2.g – Algorithms are
accurate.)

Set Vector/matrix block input conversion on
the Diagnostics > Type Conversion pane in
the Configuration Parameters dialog box or set
the parameter VectorMatrixConversionMsg to
error.

 DO-178C/DO-331 Checks

3-33

Condition Recommended Action

The diagnostic that detects when a 32-bit
integer value is converted to a floating-
point value is set to none. This type of
conversion can result in a loss of precision
due to truncation of the least significant bits
for large integer values. (See DO-331, Section
MB.6.3.1.g – Algorithms are accurate and
DO-331, Section MB.6.3.2.g – Algorithms are
accurate.)

Set 32-bit integer to single precision
float conversion on the Diagnostics >
Type Conversion pane in the Configuration
Parameters dialog box or set the parameter
Int32ToFloatConvMsg to warning.

Action Results

Clicking Modify Settings configures model diagnostic settings that apply to type
conversions and that can impact safety.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• “Diagnostics Pane: Type Conversion” in the Simulink graphical user interface
documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the DO-178C
Software Considerations in Airborne Systems and Equipment Certification and
related standards

• “hisl_0309: Configuration Parameters > Diagnostics > Type Conversion”

http://www.rtca.org/

3 Model Advisor Checks

3-34

Check safety-related diagnostic settings for signal connectivity

Check ID: mathworks.do178.ConnectivitySignalsDiagnosticsSet

Check model configuration for diagnostic settings that apply to signal connectivity and
that can impact safety.

Description

This check verifies that model diagnostic configuration parameters pertaining to signal
connectivity are set optimally for generating code for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects virtual signals
that have a common source signal but
different labels is set to none or warning.
This diagnostic pertains to virtual signals
only and has no effect on generated code.
However, signal label mismatches can lead to
confusion during model reviews.

Set Signal label mismatch on the Diagnostics
> Connectivity pane in the Configuration
Parameters dialog box or set the parameter
SignalLabelMismatchMsg to error.

The diagnostic that detects when the model
contains a block with an unconnected input
signal is set to none or warning. This must
be detected because code is not generated for
unconnected block inputs.

Set Unconnected block input ports on the
Diagnostics > Connectivity pane in the
Configuration Parameters dialog box or set the
parameter UnconnectedInputMsg to error.

The diagnostic that detects when the model
contains a block with an unconnected output
signal is set to none or warning. This must
be detected because dead code can result from
unconnected block output signals.

Set Unconnected block output ports on
the Diagnostics > Connectivity pane in the
Configuration Parameters dialog box or set the
parameter UnconnectedOutputMsg to error.

The diagnostic that detects unconnected
signal lines and unmatched Goto or From
blocks is set to none or warning. This
error must be detected because code is not
generated for unconnected lines.

Set Unconnected line on the Diagnostics
> Connectivity pane in the Configuration
Parameters dialog box or set the parameter
UnconnectedLineMsg to error.

 DO-178C/DO-331 Checks

3-35

Action Results

Clicking Modify Settings configures model diagnostic settings that apply to signal
connectivity and that can impact safety.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• DO-331, Section MB.6.3.1.e – High-level requirements conform to standards
• DO-331, Section MB.6.3.2.e – Low-level requirements conform to standards
• “Diagnostics Pane: Connectivity” in the Simulink graphical user interface

documentation
• “Signal Basics” in the Simulink documentation
• Radio Technical Commission for Aeronautics (RTCA) for information on the DO-178C

Software Considerations in Airborne Systems and Equipment Certification and
related standards

• “hisl_0306: Configuration Parameters > Diagnostics > Connectivity > Signals”

http://www.rtca.org/

3 Model Advisor Checks

3-36

Check safety-related diagnostic settings for bus connectivity

Check ID: mathworks.do178.ConnectivityBussesDiagnosticsSet

Check model configuration for diagnostic settings that apply to bus connectivity and that
can impact safety.

Description

This check verifies that model diagnostic configuration parameters pertaining to bus
connectivity are set optimally for generating code for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects whether a Model
block's root Outport block is connected to a
bus but does not specify a bus object is set to
none or warning. For a bus signal to cross a
model boundary, the signal must be defined
as a bus object for compatibility with higher
level models that use a model as a reference
model.

Set Unspecified bus object at root Outport
block on the Diagnostics > Connectivity pane
in the Configuration Parameters dialog box or set
the parameter RootOutportRequireBusObject
to error.

The diagnostic that detects whether the name
of a bus element matches the name specified
by the corresponding bus object is set to none
or warning. This diagnostic prevents the use
of incompatible buses in a bus-capable block
such that the output names are inconsistent.

Set Element name mismatch on the
Diagnostics > Connectivity pane in the
Configuration Parameters dialog box or set the
parameter BusObjectLabelMismatch to error.

The diagnostic that detects when some blocks
treat a signal as a mux/vector, while other
blocks treat the signal as a bus, is set to none
or warning. When the Simulink software
automatically converts a muxed signal to a
bus, it is possible for an unintended operation
or unpredictable behavior to occur.

• Set Mux blocks used to create bus signals
on the Diagnostics > Connectivity pane in
the Configuration Parameters dialog box to
error, or set the parameter StrictBusMsg to
ErrorOnBusTreatedAsVector.

• Set Bus signal treated as vector on the
Diagnostics > Connectivity pane in the
Configuration Parameters dialog box to

 DO-178C/DO-331 Checks

3-37

Condition Recommended Action

error, or the parameter StrictBusMsg to
ErrorOnBusTreatedAsVector.

You can use the Model Advisor or the
slreplace_mux utility function to replace all Mux
block used as bus creators with a Bus Creator
block.

Action Results

Clicking Modify Settings configures model diagnostic settings that apply to bus
connectivity and that can impact safety.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• DO-331, Section MB.6.3.3.b – Software architecture is consistent
• “Diagnostics Pane: Connectivity” in the Simulink graphical user interface

documentation
• Simulink.Bus in the Simulink reference documentation
• Radio Technical Commission for Aeronautics (RTCA) for information on the DO-178C

Software Considerations in Airborne Systems and Equipment Certification and
related standards

• “hisl_0307: Configuration Parameters > Diagnostics > Connectivity > Buses”

http://www.rtca.org/

3 Model Advisor Checks

3-38

Check safety-related diagnostic settings that apply to function-call
connectivity

Check ID: mathworks.do178.FcnCallDiagnosticsSet

Check model configuration for diagnostic settings that apply to function-call connectivity
and that can impact safety.

Description

This check verifies that model diagnostic configuration parameters pertaining to
function-call connectivity are set optimally for generating code for a safety-related
application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects incorrect use of
a function-call subsystem is set to none or
warning. If this condition is undetected,
incorrect code might be generated.

Set Invalid function-call connection on
the Diagnostics > Connectivity pane in the
Configuration Parameters dialog box or set the
parameter InvalidFcnCallConMsg to error.

The diagnostic that specifies whether the
Simulink software has to compute inputs of a
function-call subsystem directly or indirectly
while executing the subsystem is set to
Use local settings or Disable all.
This diagnostic detects unpredictable data
coupling between a function-call subsystem
and the inputs of the subsystem in the
generated code.

Set Context-dependent inputs on the
Diagnostics > Connectivity pane in the
Configuration Parameters dialog box or set the
parameter FcnCallInpInsideContextMsg to
Enable all as errors.

Action Results

Clicking Modify Settings configures model diagnostic settings that apply to function-
call connectivity and that can impact safety.

Capabilities and Limitations

• Does not run on library models.

 DO-178C/DO-331 Checks

3-39

• Does not allow exclusions of blocks or charts.

See Also

• DO-331, Section MB.6.3.3.b – Software architecture is consistent
• “Diagnostics Pane: Connectivity” in the Simulink graphical user interface

documentation
• Radio Technical Commission for Aeronautics (RTCA) for information on the DO-178C

Software Considerations in Airborne Systems and Equipment Certification and
related standards

• “hisl_0308: Configuration Parameters > Diagnostics > Connectivity > Function calls”

http://www.rtca.org/

3 Model Advisor Checks

3-40

Check safety-related diagnostic settings for compatibility

Check ID: mathworks.do178.CompatibilityDiagnosticsSet

Check model configuration for diagnostic settings that affect compatibility and that
might impact safety.

Description

This check verifies that model diagnostic configuration parameters pertaining to
compatibility are set optimally for generating code for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects when a block
has not been upgraded to use features of the
current release is set to none or warning.
An S-function written for an earlier version
might not be compatible with the current
version and generated code could operate
incorrectly.

Set S-function upgrades needed on the
Diagnostics > Compatibility pane in the
Configuration Parameters dialog box or set the
parameter SFcnCompatibilityMsg to error.

Action Results

Clicking Modify Settings configures model diagnostic settings that affect compatibility
and that might impact safety.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• DO-331, Section MB.6.3.3.b – Software architecture is consistent
• “View Diagnostics” in the Simulink documentation
• “Diagnostics Pane: Compatibility” in the Simulink graphical user interface

documentation

 DO-178C/DO-331 Checks

3-41

• Radio Technical Commission for Aeronautics (RTCA) for information on the DO-178C
Software Considerations in Airborne Systems and Equipment Certification and
related standards

• “hisl_0301: Configuration Parameters > Diagnostics > Compatibility”

Check safety-related diagnostic settings for model initialization

Check ID: mathworks.do178.InitDiagnosticsSet

In the model configuration, check diagnostic settings that affect model initialization and
might impact safety.

Description

This check verifies that model diagnostic configuration parameters for initialization are
optimally set to generate code for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

In the Configuration Parameters dialog box, on
the All Parameters tab, the “Underspecified
initialization detection” diagnostic is set to
Classic, ensuring compatibility with previous
releases of Simulink. The “Check undefined
subsystem initial output” diagnostic is cleared.
This diagnostic specifies whether Simulink
displays a warning if the model contains a
conditionally executed subsystem, in which a
block with a specified initial condition drives
an Outport block with an undefined initial
condition. A conditionally executed subsystem
could have an output that is not initialized. If
undetected, this condition can produce behavior
that is nondeterministic.

Do one of the following:

• In the Configuration Parameters dialog
box, on the All Parameters tab, set
Underspecified initialization detection
to Simplified.

• In the Configuration Parameters dialog
box, on the All Parameters tab, set
Underspecified initialization detection
to Classic and select Check undefined
subsystem initial output.

• Set the parameter
CheckSSInitialOutputMsg to on.

In the Configuration Parameters dialog box, on
the All Parameters tab, the “Underspecified

Do one of the following:

http://www.rtca.org/

3 Model Advisor Checks

3-42

Condition Recommended Action

initialization detection” diagnostic is set to
Classic, ensuring compatibility with previous
releases of Simulink. The “Check preactivation
output of execution context” diagnostic is
cleared. This diagnostic detects potential initial
output differences from earlier releases. A
conditionally executed subsystem could have
an output that is not initialized. If undetected,
this condition can produce behavior that is
nondeterministic.

• In the Configuration Parameters dialog
box, on the All Parameters tab, set
Underspecified initialization detection
to Simplified.

• In the Configuration Parameters dialog
box, on the All Parameters tab, set
Underspecified initialization detection
to Classic and select Check preactivation
output of execution context.

• Set the parameter
CheckExecutionContextPreStartOutputMsg

to on.

In the Configuration Parameters dialog box, on
the All Parameters tab, the “Underspecified
initialization detection” diagnostic is set to
Classic, ensuring compatibility with previous
releases of Simulink. The “Check runtime output
of execution context” diagnostic is cleared. This
diagnostic detects potential output differences
from earlier releases. A conditionally executed
subsystem could have an output that is not
initialized and feeds into a block with a tunable
parameter. If undetected, this condition can
cause the behavior of the downstream block to
be nondeterministic.

Do one of the following:

• In the Configuration Parameters dialog
box, on the All Parameters tab, set
Underspecified initialization detection
to Simplified.

• In the Configuration Parameters dialog
box, on the All Parameters tab, set
Underspecified initialization detection
to Classic and select Check runtime
output of execution context.

• Set the parameter
CheckExecutionContextRuntimeOutputMsg

to on.

Action Results

To configure the diagnostic settings that affect model initialization and might impact
safety, click Modify Settings.

Subchecks depend on the results of the subchecks noted with D in the results table in the
Model Advisor window.

Capabilities and Limitations

• Does not run on library models.

 DO-178C/DO-331 Checks

3-43

• Does not allow exclusions of blocks or charts.

See Also

• DO-331, Section MB.6.3.3.b – Software architecture is consistent
• MISRA C:2012, Rule 9.1
• “View Diagnostics” in the Simulink documentation
• “Diagnostics Pane: Data Validity” in the Simulink graphical user interface

documentation
• Radio Technical Commission for Aeronautics (RTCA) for information on the DO-178C

Software Considerations in Airborne Systems and Equipment Certification and
related standards

• “hisl_0304: Configuration Parameters > Diagnostics > Model initialization”

http://www.rtca.org/

3 Model Advisor Checks

3-44

Check safety-related diagnostic settings for model referencing

Check ID: mathworks.do178.MdlrefDiagnosticsSet

Check model configuration for diagnostic settings that apply to model referencing and
that can impact safety.

Description

This check verifies that model diagnostic configuration parameters pertaining to model
referencing are set optimally for generating code for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects a mismatch
between the version of the model that creates
or refreshes a Model block and the current
version of the referenced model is set to
error or warning. The detection occurs
during load and update operations. When you
get the latest version of the referenced model
from the software configuration management
system, rather than an older version that
was used in a previous simulation, if this
diagnostic is set to error, the simulation is
aborted. If the diagnostic is set to warning,
a warning message is issued. To resolve the
issue, the user must resave the model being
simulated, which may not be the desired
action. (See DO-331, Section MB.6.3.3.b –
Software architecture is consistent.)

Set Model block version mismatch on
the Diagnostics > Model Referencing
pane in the Configuration Parameters
dialog box or set the parameter
ModelReferenceVersionMismatchMessage to
none.

The diagnostic that detects port and
parameter mismatches during model loading
and updating is set to none or warning.
If undetected, such mismatches can lead
to incorrect simulation results because the
parent and referenced models have different

Set Port and parameter mismatch on the
Diagnostics > Model Referencing pane in the
Configuration Parameters dialog box or set the
parameter ModelReferenceIOMismatchMessage
to error.

 DO-178C/DO-331 Checks

3-45

Condition Recommended Action

interfaces. (See DO-331, Section MB.6.3.3.b –
Software architecture is consistent.)
The diagnostic that detects invalid internal
connections to the current model's root-level
Inport and Outport blocks is set to none
or warning. When this condition is detected,
the Simulink software might automatically
insert hidden blocks into the model to
fix the condition. The hidden blocks can
result in generated code without traceable
requirements. Setting the diagnostic to
error forces model developers to fix the
referenced models manually. (See DO-331,
Section MB.6.3.3.b – Software architecture is
consistent.)

Set Invalid root Inport/Outport block
connection on the Diagnostics > Model
Referencing pane in the Configuration
Parameters dialog box or set the parameter
ModelReferenceIOMessage to error.

The diagnostic that detects whether To
Workspace or Scope blocks are logging
data in a referenced model is set to none
or warning. Data logging is not supported
for To Workspace and Scope blocks in
referenced models. (See DO-331, Section
MB.6.3.1.d – High-level requirements are
verifiable and DO-331, Section MB.6.3.2.d –
Low-level requirements are verifiable.)

Set Unsupported data logging on the
Diagnostics > Model Referencing
pane in the Configuration Parameters
dialog box or set the parameter
ModelReferenceDataLoggingMessage to error.
To log data, remove the blocks and log the
referenced model signals. For more information, see
“Logging Referenced Model Signals”.

Action Results

Clicking Modify Settings configures model diagnostic settings that apply to model
referencing and that can impact safety.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• “View Diagnostics” in the Simulink documentation

3 Model Advisor Checks

3-46

• “Diagnostics Pane: Model Referencing” in the Simulink graphical user interface
documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the DO-178C
Software Considerations in Airborne Systems and Equipment Certification and
related standards

• “Logging Referenced Model Signals” in the Simulink documentation
• “hisl_0310: Configuration Parameters > Diagnostics > Model Referencing”

http://www.rtca.org/

 DO-178C/DO-331 Checks

3-47

Check safety-related model referencing settings

Check ID: mathworks.do178.MdlrefOptSet

Check model configuration for model referencing settings that can impact safety.

Description

This check verifies that model configuration parameters for model referencing are set
optimally for generating code for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The referenced model is configured such
that its target is rebuilt whenever you
update, simulate, or generate code for
the model, or if the Simulink software
detects changes in known dependencies.
These configuration settings can result
in unnecessary regeneration of the code,
resulting in changing only the date of the file
and slowing down the build process when
using model references. (See DO-331, Section
MB.6.3.1.b – High-level requirements are
accurate and consistent and DO-331, Section
MB.6.3.2.b – Low-level requirements are
accurate and consistent.)

Set Rebuild on the Model Referencing pane in
the Configuration Parameters dialog box or set the
parameter UpdateModelReferenceTargets to
Never or If any changes detected.

The diagnostic that detects whether a target
needs to be rebuilt is set to None or Warn
if targets require rebuild. For
safety-related applications, an error should
alert model developers that the parent and
referenced models are inconsistent. This
diagnostic parameter is available only if
Rebuild is set to Never. (See DO-331,
Section MB.6.3.1.b – High-level requirements
are accurate and consistent and DO-331,

Set Never rebuild diagnostic on the Model
Referencing pane in the Configuration
Parameters dialog box or set the parameter
CheckModelReferenceTargetMessage to error.

3 Model Advisor Checks

3-48

Condition Recommended Action

Section MB.6.3.2.b – Low-level requirements
are accurate and consistent.)
The ability to pass scalar root input by
value is off. This capability should be off
because scalar values can change during a
time step and result in unpredictable data.
(See DO-331, Section MB.6.3.3.b – Software
architecture is consistent.)

Set Pass fixed-size scalar root inputs by
value for Real-Time Workshop on the
Model Referencing pane in the Configuration
Parameters dialog box or set the parameter
ModelReferencePassRootInputsByReference

to off.
The model is configured to minimize
algebraic loop occurrences. This configuration
is incompatible with the recommended
setting of Single output/update function
for embedded systems code. (See DO-331,
Section MB.6.3.3.b – Software architecture is
consistent.)

In the Configuration Parameters dialog box,
on the All Parameters tab, set Minimize
algebraic loop occurrences or set the parameter
ModelReferenceMinAlgLoopOccurrences to
off.

Action Results

Clicking Modify Settings configures model referencing settings that can impact safety.

Subchecks depend on the results of the subchecks noted with D in the results table in the
Model Advisor window.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• “Analyze Model Dependencies” in the Simulink documentation
• “Model Referencing Pane” in the Simulink graphical user interface documentation
• Radio Technical Commission for Aeronautics (RTCA) for information on the DO-178C

Software Considerations in Airborne Systems and Equipment Certification and
related standards

http://www.rtca.org/

 DO-178C/DO-331 Checks

3-49

Check safety-related code generation settings

Check ID: mathworks.do178.CodeSet

Check model configuration for code generation settings that can impact safety.

Description

This check verifies that model configuration parameters for code generation are set
optimally for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The option to include comments in the
generated code is cleared. Comments provide
good traceability between the code and the
model. (See DO-331, Section MB.6.3.4.e
– Source code is traceable to low-level
requirements.)

Select Include comments on the Code
Generation > Comments pane in the
Configuration Parameters dialog box or set the
parameter GenerateComments to on.

The option to include comments that describe
the code for blocks is cleared. Comments
provide good traceability between the
code and the model. (See DO-331, Section
MB.6.3.4.e – Source code is traceable to low-
level requirements.)

Select Simulink block / Stateflow object
comments on the Code Generation >
Comments pane in the Configuration
Parameters dialog box or set the parameter
SimulinkBlockComments to on.

The option to include comments that describe
the code for blocks eliminated from a model is
cleared. Comments provide good traceability
between the code and the model. (See
DO-331, Section MB.6.3.4.e – Source code is
traceable to low-level requirements.)

Select Show eliminated blocks on the
Code Generation > Comments pane in the
Configuration Parameters dialog box or set the
parameter ShowEliminatedStatement to on.

The option to include the names of parameter
variables and source blocks as comments in
the model parameter structure declaration in
model_prm.h is cleared. Comments provide
good traceability between the code and the
model. (See DO-331, Section MB.6.3.4.e

Select Verbose comments for SimulinkGlobal
storage class on the Code Generation
> Comments pane in the Configuration
Parameters dialog box or set the parameter
ForceParamTrailComments to on.

3 Model Advisor Checks

3-50

Condition Recommended Action

– Source code is traceable to low-level
requirements.)
The option to include requirement
descriptions assigned to Simulink blocks as
comments is cleared. Comments provide good
traceability between the code and the model.
(See DO-331, Section MB.6.3.4.e – Source
code is traceable to low-level requirements.)

Select Requirements in block comments on the
Code Generation > Custom comments pane in
the Configuration Parameters dialog box or set the
parameter ReqsInCode to on.

The option to generate nonfinite data and
operations is selected. Support for nonfinite
numbers is inappropriate for real-time
embedded systems. (See DO-331, Section
MB.6.3.1.c – High-level requirements are
compatible with target computer and DO-331,
Section MB.6.3.2.c – Low-level requirements
are compatible with target computer.)

Clear Support: non-finite numbers on the Code
Generation > Interface pane in the Configuration
Parameters dialog box or set the parameter
SupportNonFinite to off.

The option to generate and maintain integer
counters for absolute and elapsed time
is selected. Support for absolute time is
inappropriate for real-time safety-related
systems. (See DO-331, Section MB.6.3.1.c
– High-level requirements are compatible
with target computer and DO-331, Section
MB.6.3.2.c – Low-level requirements are
compatible with target computer.)

Clear Support: absolute time on the Code
Generation > Interface pane in the Configuration
Parameters dialog box or set the parameter
SupportAbsoluteTime to off.

The option to generate code for blocks that
use continuous time is selected. Support for
continuous time is inappropriate for real-time
safety-related systems. (See DO-331, Section
MB.6.3.1.c – High-level requirements are
compatible with target computer and DO-331,
Section MB.6.3.2.c – Low-level requirements
are compatible with target computer.)

Clear Support: continuous time on the Code
Generation > Interface pane in the Configuration
Parameters dialog box or set the parameter
SupportContinuousTime to off.

 DO-178C/DO-331 Checks

3-51

Condition Recommended Action

The option to generate code for noninlined
S-functions is selected. This option requires
support of nonfinite numbers, which is
inappropriate for real-time safety-related
systems. (See DO-331, Section MB.6.3.1.c
– High-level requirements are compatible
with target computer and DO-331, Section
MB.6.3.2.c – Low-level requirements are
compatible with target computer.)

Clear Support: non-inlined S-functions on
the All Parameters tab in the Configuration
Parameters dialog box or set the parameter
SupportNonInlinedSFcns to off.

The option to generate model function calls
compatible with the main program module
of the pre-R2012a GRT target is selected.
This option is inappropriate for real-time
safety-related systems. (See DO-331, Section
MB.6.3.1.c – High-level requirements are
compatible with target computer and DO-331,
Section MB.6.3.2.c – Low-level requirements
are compatible with target computer.)

Clear Classic call interface on the Code
Generation > All Parameters pane in the
Configuration Parameters dialog box or set the
parameter GRTInterface to off.

The option to generate the model_update
function is cleared. Having a single call to
the output and update functions simplifies
the interface to the real-time operating
system (RTOS) and simplifies verification
of the generated code. (See DO-331, Section
MB.6.3.1.c – High-level requirements are
compatible with target computer and DO-331,
Section MB.6.3.2.c – Low-level requirements
are compatible with target computer.)

Select Single output/update function on
the All Parameters tab in the Configuration
Parameters dialog box or set the parameter
CombineOutputUpdateFcns to on.

The option to generate the
model_terminate function is selected. This
function deallocates dynamic memory, which
is unsuitable for real-time safety-related
systems. (See DO-331, Section MB.6.3.1.c
– High-level requirements are compatible
with target computer and DO-331, Section
MB.6.3.2.c – Low-level requirements are
compatible with target computer.)

Clear Terminate function required on the
All Parameters tab in the Configuration
Parameters dialog box or set the parameter
IncludeMdlTerminateFcn to off.

3 Model Advisor Checks

3-52

Condition Recommended Action

The option to log or monitor error status is
cleared. If you do not select this option, the
Simulink Coder product generates extra
code that might not be reachable for testing.
(See DO-331, Section MB.6.3.1.c – High-level
requirements are compatible with target
computer and DO-331, Section MB.6.3.2.c –
Low-level requirements are compatible with
target computer.)

Select Suppress error status in real-
time model data structure on the Code
Generation > Interface pane in the Configuration
Parameters dialog box or set the parameter
SuppressErrorStatus to on.

MAT-file logging is selected. This option
adds extra code for logging test points
to a MAT-file, which is not supported by
embedded targets. Use this option only in test
harnesses. (See DO-331, Section MB.6.3.1.c
– High-level requirements are compatible
with target computer and DO-331, Section
MB.6.3.2.c – Low-level requirements are
compatible with target computer.)

Clear MAT-file logging on the All Parameters
tab in the Configuration Parameters dialog box or
set the parameter MatFileLogging to off.

The option that specifies the style for
parenthesis usage is set to Minimum (Rely
on C/C++ operators precedence) or to
Nominal (Optimize for readability).
For safety-related applications, explicitly
specify precedence with parentheses. (See
DO-331, Section MB.6.3.1.c – High-level
requirements are compatible with target
computer, DO-331, Section MB.6.3.2.c – Low-
level requirements are compatible with target
computer, and MISRA C:2012, Rule 12.1.)

Set Parentheses level on the Code Generation
> Code Style pane in the Configuration
Parameters dialog box or set the parameter
ParenthesesLevel to Maximum (Specify
precedence with parentheses).

The option that specifies whether to preserve
operand order is cleared. This option
increases the traceability of the generated
code. (See DO-331, Section MB.6.3.4.e
– Source code is traceable to low-level
requirements.)

Select Preserve operand order in expression
on the Code Generation > Code Style pane in
the Configuration Parameters dialog box or set the
parameter PreserveExpressionOrder to on.

 DO-178C/DO-331 Checks

3-53

Condition Recommended Action

The option that specifies whether to preserve
empty primary condition expressions in if
statements is cleared. This option increases
the traceability of the generated code. (See
DO-331, Section MB.6.3.4.e – Source code is
traceable to low-level requirements.)

Select Preserve condition expression in if
statement on the Code Generation > Code
Style pane in the Configuration Parameters dialog
box or set the parameter PreserveIfCondition
to on.

The minimum number of characters specified
for generating name mangling strings is
less than four. You can use this option to
minimize the likelihood that parameter
and signal names will change during code
generation when the model changes. Use
of this option assists with minimizing code
differences between file versions, decreasing
the effort to perform code reviews. (See
DO-331, Section MB.6.3.4.e – Source code is
traceable to low-level requirements.)

Set Minimum mangle length on the Code
Generation > Symbols pane in the Configuration
Parameters dialog box or the parameter
MangleLength to a value of 4 or greater.

Action Results

Clicking Modify Settings configures model code generation settings that can impact
safety.

Subchecks depend on the results of the subchecks noted with D in the results table in the
Model Advisor window.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• “Code Generation Pane: Comments”“Code Generation Pane: Comments” in the
Simulink Coder reference documentation

• “Code Generation Pane: Symbols” in the Simulink Coder reference documentation
• “Code Generation Pane: Interface” in the Simulink Coder reference documentation
• “Code Generation Pane: Code Style” in the Embedded Coder reference documentation

3 Model Advisor Checks

3-54

• Radio Technical Commission for Aeronautics (RTCA) for information on the DO-178C
Software Considerations in Airborne Systems and Equipment Certification and
related standards

http://www.rtca.org/

 DO-178C/DO-331 Checks

3-55

Check safety-related diagnostic settings for saving

Check ID: mathworks.do178.SavingDiagnosticsSet

Check model configuration for diagnostic settings that apply to saving model files

Description

This check verifies that model configuration parameters are set optimally for saving a
model for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects whether a model
contains disabled library links before the
model is saved is set to none or warning. If
this condition is undetected, incorrect code
might be generated.

Set Block diagram contains disabled
library links on the All Parameters tab in the
Configuration Parameters dialog box or set the
parameter SaveWithDisabledLinkMsg to error.

The diagnostic that detects whether a
model contains library links that are using
parameters not in a mask before the model
is saved is set to none or warning. If this
condition is undetected, incorrect code might
be generated.

Set Block diagram contains parameterized
library links on the All Parameters tab in the
Configuration Parameters dialog box or set the
parameter SaveWithParameterizedLinkMsg to
error.

Action Results

Clicking Modify Settings configures model diagnostic settings that apply to saving a
model file.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• DO-331, Section MB.6.3.3.b - Software architecture is consistent

3 Model Advisor Checks

3-56

• “Disable Links to Library Blocks” in the Simulink documentation
• “Identify disabled library links” in the Simulink documentation
• “Save a Model” in the Simulink documentation
• “Model Parameters” in the Simulink documentation
• “Diagnostics Pane: Saving” in the Simulink documentation

 DO-178C/DO-331 Checks

3-57

Check for blocks that do not link to requirements

Check ID: mathworks.do178.RequirementInfo

Check whether Simulink blocks and Stateflow objects link to a requirements document.

Description

This check verifies whether Simulink blocks and Stateflow objects link to a document
containing engineering requirements for traceability.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Blocks do not link to a requirements
document.

Link to requirements document. See
“Link to Requirements Document Using
Selection-Based Linking”.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Allows exclusions of blocks and charts.

Tip

Run this check from the top model or subsystem that you want to check.

See Also

• DO-331, Section MB.6.3.1.f - High-level requirements trace to system requirements
• DO-331, Section MB.6.3.2.f - Low-level requirements trace to high-level requirements
• “Requirements Traceability”

3 Model Advisor Checks

3-58

Check state machine type of Stateflow charts

Check ID: mathworks.do178.hisf_0001

Identify whether Stateflow charts are all Mealy or all Moore charts.

Description

Compares the state machine type of all Stateflow charts to the type that you specify in
the input parameters.

Available with Simulink Verification and Validation.

Input Parameters

Common
Check whether charts use the same state machine type, and are all Mealy or all
Moore charts.

Mealy
Check whether all charts are Mealy charts.

Moore
Check whether all charts are Moore charts.

Results and Recommended Actions

Condition Recommended Action

The input parameter is set to Common
and charts in the model use either of the
following:

• Classic state machine types.
• Multiple state machine types.

For each chart, in the Chart Properties
dialog box, specify State Machine Type to
either Mealy or Moore. Use the same state
machine type for all charts in the model.

The input parameter is set to Mealy
and charts in the model use other state
machine types.

For each chart, in the Chart Properties
dialog box, specify State Machine Type to
Mealy.

The input parameter is set to Moore
and charts in the model use other state
machine types.

For each chart, in the Chart Properties
dialog box, specify State Machine Type to
Moore.

 DO-178C/DO-331 Checks

3-59

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• DO-331, Section MB.6.3.1.b - High-level requirements are accurate and consistent
• DO-331, Section MB.6.3.1.e - High-level requirements conform to standards
• DO-331, Section MB.6.3.2.b - Low-level requirements are accurate and consistent
• DO-331, Section MB.6.3.2.e - Low-level requirements conform to standards
• DO-331, Section MB.6.3.3.b - Software architecture is consistent
• DO-331, Section MB.6.3.3.e - Software architecture conform to standards
• “hisf_0001: Mealy and Moore semantics”
• “Overview of Mealy and Moore Machines”
• “Chart Properties”
• “Chart Architecture”

3 Model Advisor Checks

3-60

Check Stateflow charts for ordering of states and transitions

Check ID: mathworks.do178.hisf_0002

Identify Stateflow charts that have User specified state/transition execution order
cleared.

Description

Identify Stateflow charts that have User specified state/transition execution order
cleared, and therefore do not use explicit ordering of parallel states and transitions.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Stateflow charts have User specified
state/transition execution order
cleared.

For the specified charts, in the Chart
Properties dialog box, select User
specified state/transition execution
order.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

Action Results

Clicking Modify selects User specified state/transition execution order for the
specified charts.

See Also

• DO-331, Section MB.6.3.3.b - Software architecture is consistent
• DO-331, Section MB.6.3.3.e - Software architecture conform to standards
• “hisf_0002: User-specified state/transition execution order”

 DO-178C/DO-331 Checks

3-61

“Transition Testing Order in Multilevel State Hierarchy” in the Stateflow
documentation.

• “Execution Order for Parallel States” in the Stateflow documentation.
• “Chart Properties”
• “Chart Architecture”

3 Model Advisor Checks

3-62

Check Stateflow debugging options

Check ID: mathworks.do178.hisf_0011

Check the Stateflow debugging settings.

Description

Verify the following debugging settings.

• Wrap on overflow
• Simulation range checking
• Detect Cycles

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Any of the following:

• Wrap on overflow is not set to error.
• Simulation range checking is not set

to error.
• Detect Cycles is cleared.

In the Configuration Parameters dialog
box, set:

• Diagnostics > Data Validity > Wrap
on overflow to error.

• Diagnostics > Data Validity >
Simulation range checking to error.

In the model window, select:

• Simulation > Debug > MATLAB &
Stateflow Error Checking Options >
Detect Cycles.

Capabilities and Limitations

• Does not run on library models.
• Does not analyze content of library linked blocks.
• Allows exclusions of blocks and charts.

Action Results

Clicking Modify selects the specified debugging options.

 DO-178C/DO-331 Checks

3-63

See Also

• DO-331, Section MB.6.3.1.b - High-level requirements are accurate and consistent
• DO-331, Section MB.6.3.1.e - High-level requirements conform to standards
• DO-331, Section MB.6.3.2.b - Low-level requirements are accurate and consistent
• DO-331, Section MB.6.3.2.e - Low-level requirements conform to standards
• “hisf_0011: Stateflow debugging settings”
• “Chart Properties”
• “Chart Architecture”

3 Model Advisor Checks

3-64

Check usage of lookup table blocks

Check ID: mathworks.do178.LUTRangeCheckCode

Check for lookup table blocks that do not generate out-of-range checking code.

Description

This check verifies that the following blocks generate code to protect against inputs that
fall outside the range of valid breakpoint values:

• 1-D Lookup Table

• 2-D Lookup Table

• n-D Lookup Table

• Prelookup

This check also verifies that Interpolation Using Prelookup blocks generate code
to protect against inputs that fall outside the range of valid index values.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The lookup table block does not generate
out-of-range checking code.

Change the setting on the block dialog
box so that out-of-range checking code is
generated.

• For the 1-D Lookup Table, 2-D
Lookup Table, n-D Lookup Table,
and Prelookup blocks, clear the check
box for Remove protection against
out-of-range input in generated
code.

• For the Interpolation Using
Prelookup block, clear the check box
for Remove protection against out-
of-range index in generated code.

 DO-178C/DO-331 Checks

3-65

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

Action Results

Clicking Modify verifies that lookup table blocks are set to generate out-of-range
checking code.

See Also

• DO-331, Sections MB.6.3.1.g and MB.6.3.2.g - Algorithms are accurate
• n-D Lookup Table block in the Simulink documentation
• Prelookup block in the Simulink documentation
• Interpolation Using Prelookup block in the Simulink documentation

3 Model Advisor Checks

3-66

Check MATLAB Code Analyzer messages

Check ID: mathworks.do178.himl_0004

Check MATLAB Functions for %#codegen directive, MATLAB Code Analyzer messages,
and justification message IDs.

Description

Verifies %#codegen directive, MATLAB Code Analyzer messages, and justification
message IDs for:

• MATLAB code in MATLAB Function blocks
• MATLAB functions defined in Stateflow charts
• Called MATLAB functions

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

For MATLAB code in MATLAB Function
blocks, either of the following:

• Code lines are not justified with a %#ok
comment.

• Codes lines justified with %#ok do not
specify a message id.

• Implement MATLAB Code Analyzer
recommendations.

• Justify not following MATLAB Code
Analyzer recommendations with a %#ok
comment.

• Specify justified code lines with
a message id. For example,
%#ok<NOPRT>.

For MATLAB functions defined in
Stateflow charts, either of the following:

• Code lines are not justified with a %#ok
comment.

• Codes lines justified with %#ok do not
specify a message id.

• Implement MATLAB Code Analyzer
recommendations.

• Justify not following MATLAB Code
Analyzer recommendations with a %#ok
comment.

• Specify justified code lines with
a message id. For example,
%#ok<NOPRT>.

 DO-178C/DO-331 Checks

3-67

Condition Recommended Action

For called MATLAB functions:

• Code does not have the %#codegen
directive.

• Code lines are not justified with a %#ok
comment.

• Codes lines justified with %#ok do not
specify a message id.

• Insert %#codegen directive in the
MATLAB code.

• Implement MATLAB Code Analyzer
recommendations.

• Justify not following MATLAB Code
Analyzer recommendations with a %#ok
comment.

• Specify justified code lines with
a message id. For example,
%#ok<NOPRT>.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Does not allow exclusions of blocks or charts.

See Also

• DO-331, Sections MB.6.3.1.b and MB.6.3.2.b - Accuracy and consistency
• “Check Code for Errors and Warnings”
• “himl_0004: MATLAB Code Analyzer recommendations for code generation”

3 Model Advisor Checks

3-68

Check MATLAB code for global variables

Check ID: mathworks.do178.himl_0005

Check for global variables in MATLAB code.

Description

Verifies that global variables are not used in any of the following:

• MATLAB code in MATLAB Function blocks
• MATLAB functions defined in Stateflow charts
• Called MATLAB functions

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Global variables are used in one or more of
the following:

• MATLAB code in MATLAB Function
blocks

• MATLAB functions defined in Stateflow
charts

• Called MATLAB functions

Replace global variables with signal lines,
function arguments, or persistent data.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Does not allow exclusions of blocks or charts.

See Also

• DO-331, Sections MB.6.3.3.b ‘Consistency’
• “himl_0005: Usage of global variables in MATLAB functions”

 DO-178C/DO-331 Checks

3-69

3 Model Advisor Checks

3-70

Check for inconsistent vector indexing methods

Check ID: mathworks.do178.hisl_0021

Identify blocks with inconsistent indexing method.

Description

Using inconsistent block indexing methods can result in modeling errors. You should
use a consistent vector indexing method for all blocks. This check identifies blocks with
inconsistent indexing methods. The indexing methods are zero-based, one-based or user-
specified.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains blocks
with inconsistent indexing methods. The
indexing methods are zero-based, one-
based or user-specified.

Modify the model to use a single consistent
indexing method.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Allows exclusions of blocks and charts.

See Also

• DO-331, Section MB.6.3.2.b - Low-level requirements are accurate and consistent
• “hisl_0021: Consistent vector indexing method”

 DO-178C/DO-331 Checks

3-71

Check for MATLAB Function interfaces with inherited properties

Check ID: mathworks.do178.himl_0002

Identify MATLAB Functions that have inputs, outputs or parameters with inherited
complexity or data type properties.

Description

The check identifies MATLAB Functions with inherited complexity or data type
properties. A results table provides links to MATLAB Functions that do not pass the
check, along with conditions triggering the warning.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

MATLAB Functions have inherited
interfaces.

Explicitly define complexity and data
type properties for inports, outports,
and parameters of MATLAB Functions
identified in the results.

If applicable, using the “MATLAB
Function Block Editor”, make the following
modifications in the “Ports and Data
Manager”:

• Change Complexity from Inherited
to On or Off.

• Change Type from Inherit: Same as
Simulink to an explicit type.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

3 Model Advisor Checks

3-72

See Also

• DO-331, Section MB.6.3.2.b - Low-level requirements are accurate and consistent
• “himl_0002: Strong data typing at MATLAB function boundaries”

 DO-178C/DO-331 Checks

3-73

Check MATLAB Function metrics

Check ID: mathworks.do178.himl_0003

Display complexity and code metrics for MATLAB Functions. Report metric violations.

Description

This check provides complexity and code metrics for MATLAB Functions. The check
additionally reports metric violations. A results table provides links to MATLAB
Functions that violate the complexity input parameters.

Available with Simulink Verification and Validation.

Input Parameters

Maximum effective lines of code per function
Provide the maximum effective lines of code per function. Effective lines do not
include empty lines, comment lines, or lines with a function end keyword.

Minimum density of comments
Provide minimum density of comments. Density is ratio of comment lines to total
lines of code.

Maximum cyclomatic complexity per function
Provide maximum cyclomatic complexity per function. Cyclomatic complexity is the
number of linearly independent paths through the source code.

Results and Recommended Actions

Condition Recommended Action

MATLAB Function violates the complexity
input parameters.

For the MATLAB Function:

• If effective lines of code is too high,
further divide the MATLAB Function.

• If comment density is too low, add
comment lines.

• If cyclomatic complexity per function is
too high, further divide the MATLAB
Function.

3 Model Advisor Checks

3-74

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• DO-331, Sections MB.6.3.1.e - High-level requirements conform to standards
• DO-331, Sections MB.6.3.2.e - Low-level requirements conform to standards
• “himl_0003: Limitation of MATLAB function complexity”

 DO-178C/DO-331 Checks

3-75

Check for blocks not recommended for C/C++ production code
deployment

Check ID: mathworks.do178.PCGSupport

Identify blocks not supported by code generation or not recommended for C/C++
production code deployment.

Description

This check partially identifies model constructs that are not recommended for C/C+
+ production code generation as identified in the Simulink Block Support tables for
Simulink Coder and Embedded Coder. If you are using blocks with support notes for code
generation, review the information and follow the given advice.

Available with Simulink Verification and Validation and Embedded Coder.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains blocks
that should not be used for production code
deployment.

Consider replacing the blocks listed in the
results. Click an element from the list of
questionable items to locate condition.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• DO-331, Section MB.6.3.2.b - Low-level requirements are accurate and consistent
• “Supported Products and Block Usage”

3 Model Advisor Checks

3-76

Check for variant blocks with 'Generate preprocessor conditionals' active

Check ID: mathworks.do178.VariantBlock

Check variant block parameters for settings that might result in code that does not trace
to requirements.

Description

This check verifies that variant block parameters for code generation are set to trace to
requirements.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The option to generate preprocessor
conditionals is selected in one or more variant
blocks in the model.

In order to simplify the tracing of code to
requirements, consider clearing the option to
generate preprocessor conditionals in variant
blocks.

Capabilities and Limitations

• Does not run on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Does not allow exclusions of blocks or charts.

See Also

• DO-331 Section MB.6.3.4.e — Source code is traceable to low-level requirements

 DO-178C/DO-331 Checks

3-77

Check Stateflow charts for uniquely defined data objects

Check ID: mathworks.do178.hisl_0061

Identify Stateflow charts that include data objects that are not uniquely defined.

Description

This check searches your model for local data in Stateflow charts that is not uniquely
defined.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The Stateflow chart contains a data object
identifier defined in two or more scopes.

For the identified chart, do one of the
following:

• Create a unique data object identifier
within each of the scopes.

• Create a unique data object identifier
within the chart, at the parent level.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Does not allow exclusions of blocks or charts.

See Also

• DO-331, Section MB.6.3.2.b - Low-level requirements are accurate and consistent
• “hisl_0061: Unique identifiers for clarity”

3 Model Advisor Checks

3-78

Check usage of Math Operations blocks

Check ID: mathworks.do178.MathOperationsBlocksUsage

Identify usage of Math Operation blocks that might impact safety.

Description

This check inspects the usage of the following blocks:

• Abs

• Gain

• Math Function

• Natural logarithm
• Common (base 10) logarithm
• Remainder after division
• Reciprocal

• Assignment

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains an
Absolute Value block that is operating
on one of the following:

• A boolean or an unsigned input
data type. This condition results in
unreachable simulation pathways
through the model and might result in
unreachable code

• A signed integer value with the
Saturate on integer overflow check
box not selected. For signed data types,
the absolute value of the most negative
value is problematic because it is not

If the identified Absolute Value block
is operating on a boolean or unsigned data
type, do one of the following:

• Change the input of the Absolute
Value block to a signed input type.

• Remove the Absolute Value block
from the model.

If the identified Absolute Value block
is operating on a signed data type, in the
Block Parameters > Signal Attributes
dialog box, select Saturate on integer
overflow.

 DO-178C/DO-331 Checks

3-79

Condition Recommended Action

representable by the data type. This
condition results in an overflow in the
generated code.

The model or subsystem contains Gain
blocks with a of value 1 or an identity
matrix.

If you are using Gain blocks as buffers,
consider replacing them with Signal
Conversion blocks.

The model or subsystem contains Math
Function - Natural logarithm (log)
blocks that might result in non-finite
output signals. Non-finite signals are not
supported in real-time embedded systems.

When using the Math Function block
with a log function, protect the input to
the block from being less than or equal to
zero. Otherwise, the output can produce a
NaN or -Inf and result in a run-time error
in the generated code.

The model or subsystem contains Math
Function - Common (base 10)(base 10
logarithm) blocks that might result in
non-finite output signals. Non-finite signals
are not supported in real-time embedded
systems.

When using the Math Function block
with a log10 function, protect the input to
the block from being less than or equal to
zero. Otherwise, the output can produce a
NaN or -Inf and result in a run-time error
in the generated code.

The model or subsystem contains Math
Function - Remainder after division(rem)
blocks that might result in non-finite
output signals. Non-finite signals are not
supported in real-time embedded systems.

When using the Math Function block
with a rem function, protect the second
input to the block from being equal to zero.
Otherwise the output can produce a Inf or
-Inf and result in a run-time error in the
generated code.

The model or subsystem contains Math
Function - Reciprocal (reciprocal)
blocks that might result in non-finite
output signals. Non-finite signals are not
supported in real-time embedded systems.

When using the Math Function block
with a reciprocal function, protect the
input to the block from being equal to zero.
Otherwise the output can produce a Inf or
-Inf and result in a run-time error in the
generated code.

3 Model Advisor Checks

3-80

Condition Recommended Action

The model or subsystem might contain
Assignment blocks with incomplete
array initialization that do not have block
parameter Action if any output element
is not assigned set to Error or Warning.

Set block parameter Action if any output
element is not assigned to one of the
recommended values:

• Error, if Assignment block is not in an
Iterator subsystem.

• Warning, if Assignment block is in an
Iterator subsystem.

Capabilities and Limitations

• Does not run on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• DO-331 Section MB.6.3.1.d – High-level requirements are verifiable
• DO-331 Section MB.6.3.2.d – Low-level requirements are verifiable
• MISRA C:2012, Dir 4.1
• MISRA C:2012, Rule 9.1
• “hisl_0001: Usage of Abs block”
• “hisl_0002: Usage of Math Function blocks (rem and reciprocal)”
• “hisl_0004: Usage of Math Function blocks (natural logarithm and base 10

logarithm)”
• “hisl_0029: Usage of Assignment blocks”

 DO-178C/DO-331 Checks

3-81

Check usage of Signal Routing blocks

Check ID: mathworks.do178.SignalRoutingBlockUsage

Identify usage of Signal Routing blocks that might impact safety.

Description

This check identifies model or subsystem Switch blocks that might generate code
with inequality operations (~=) in expressions that contain a floating-point variable or
constant.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains a Switch
block that might generate code with
inequality operations (~=) in expressions
where at least one side of the expression
contains a floating-point variable or
constant. The Switch block might cause
floating-point inequality comparisons in
the generated code.

For the identified block, do one of the
following:

• For the control input block, change the
Data type parameter setting.

• Change the Switch block Criteria for
passing first input parameter setting.
This might change the algorithm.

Capabilities and Limitations

• Does not run on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• DO-331, Sections MB.6.3.1.g and MB.6.3.2.g - Algorithms are accurate
• MISRA C:2012, Dir 1.1

3 Model Advisor Checks

3-82

Check usage of Logic and Bit Operations blocks

Check ID: mathworks.do178.LogicBlockUsage

Identify usage of Logical Operator and Bit Operations blocks that might impact
safety.

Description

This check inspects the usage of:

• Blocks that compute relational operators, including Relational Operator,
Compare To Constant, Compare To Zero, and Detect Change blocks

• Logical Operator blocks

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains a block
computing a relational operator that is
operating on different data types. The
condition can lead to unpredictable results
in the generated code.

For the identified blocks, use common data
types as inputs. You can use Data Type
Conversion blocks to change input data
types.

The model or subsystem contains a block
computing a relational operator that does
not have Boolean output. The condition
can lead to unpredictable results in the
generated code.

For the specified blocks, on the Block
Parameters > Signal Attributes pane, set
the Output data type to boolean.

The model or subsystem contains a block
computing a relational operator that uses
the == or ~= operator to compare floating-
point signals. The use of these operators
on floating-point signals is unreliable and
unpredictable because of floating-point
precision issues. These operators can lead
to unpredictable results in the generated
code.

For the identified block, do one of the
following:

• Change the signal data type.
• Rework the model to eliminate using

== or ~= operators on floating-point
signals.

 DO-178C/DO-331 Checks

3-83

Condition Recommended Action

The model or subsystem contains a
Logical Operator block that has inputs
or outputs that are not Boolean inputs or
outputs. The block might result in floating-
point equality or inequality comparisons in
the generated code.

• Modify the Logical Operator block
so that all inputs and outputs are
Boolean. On the Block Parameters
> Signal Attributes pane, consider
selecting Require all inputs to have
the same data type and setting
Output data type to boolean.

• In the Configuration Parameters
dialog box, on the All Parameters tab,
consider selecting the Implement logic
signals as boolean data (vs. double).

Capabilities and Limitations

• Does not run on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• DO-331, Sections MB.6.3.1.g and MB.6.3.2.g - Algorithms are accurate
• MISRA C:2012, Dir 1.1
• MISRA C:2012, Rule 10.1
• “hisl_0016: Usage of blocks that compute relational operators”
• “hisl_0017: Usage of blocks that compute relational operators (2)”
• “hisl_0018: Usage of Logical Operator block”

3 Model Advisor Checks

3-84

Check usage of Ports and Subsystems blocks

Check ID: mathworks.do178.PortsSubsystemsUsage

Identify usage of Ports and Subsystems blocks that might impact safety.

Description

This check inspects the usage of:

• For Iterator blocks
• While Iterator blocks
• If blocks
• Switch Case blocks

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains a
For Iterator block that has variable
iterations. This condition can lead to
unpredictable execution times or infinite
loops in the generated code.

For the identified For Iterator blocks,
do one of the following:

• Set the Iteration limit source
parameter to internal.

• If the Iteration limit source
parameter must be external, use a
Constant, Probe, or Width block as
the source.

• Clear the Set next i (iteration
variable) externally check box.

• Consider selecting the Show iteration
variable check box and observe the
iteration value during simulation.

The model or subsystem contains a While
Iterator block that has unlimited
iterations. This condition can lead to
infinite loops in the generated code.

For the identified While Iterator blocks:

• Set the Maximum number of
iterations (-1 for unlimited)
parameter to a positive integer value.

 DO-178C/DO-331 Checks

3-85

Condition Recommended Action

• Consider selecting the Show iteration
number port check box and observe
the iteration value during simulation.

The model or subsystem contains an
If block with an If expression or Elseif
expressions that might cause floating-
point equality or inequality comparisons in
generated code.

Modify the expressions in the If block to
avoid floating-point equality or inequality
comparisons in generated code.

The model or subsystem contains an If
block using Elseif expressions without an
Else condition.

In the If block Block Parameters dialog
box, select Show else condition. Connect
the resulting Else output port to an If
Action Subsystem block.

The model or subsystem contains an If
block with output ports that do not connect
to If Action Subsystem blocks.

Verify that output ports of the If block
connect to If Action Subsystem blocks.

The model or subsystem contains an
Switch Case block without a default case.

In the Switch Case block Block
Parameters dialog box, select Show
default case. Connect the resulting
default output port to a Switch Case
Action Subsystem block.

The model or subsystem contains a Switch
Case block with an output port that does
not connect to a Switch Case Action
Subsystem block.

Verify that output ports of the Switch
Case blocks connect to Switch Case
Action Subsystem blocks.

3 Model Advisor Checks

3-86

Condition Recommended Action

The model or subsystem contains one of the
following time-dependent blocks in a For
Iterator or While Iterator subsystem:

• Discrete Filter

• Discrete FIR Filter

• Discrete State-Space

• Discrete Transfer Fcn

• Discrete Zero-Pole

• Transfer Fcn First Order

• Transfer Fcn Lead or Lag

• Transfer Fnc Real Zero

• Discrete Derivative

• Discrete Transfer Fcn (with

initial outputs)

• Discrete Transfer Fcn (with

initial states)

• Discrete Zero-Pole (with

initial outputs)

• Discrete Zero-Pole (with

initial states)

In the model or subsystem, consider
removing the time-dependent blocks.

Capabilities and Limitations

• Does not run on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• DO-331, Section MB.6.3.3.b—Software architecture is consistent
• DO-331, Sections MB.6.3.1.g and MB.6.3.2.g - Algorithms are accurate
• DO-331, Section MB.6.3.1.e – High-level requirements conform to standards

 DO-178C/DO-331 Checks

3-87

• DO-331, Section MB.6.3.2.e – Low-level requirements conform to standards
• MISRA C:2012, Rule 14.2
• MISRA C:2012, Rule 16.4
• MISRA C:2012, Dir 4.1
• “hisl_0006: Usage of While Iterator blocks”
• “hisl_0007: Usage of While Iterator subsystems”
• “hisl_0008: Usage of For Iterator Blocks”
• “hisl_0009: Usage of For Iterator Subsystem blocks”

3 Model Advisor Checks

3-88

Display model version information

Check ID: mathworks.do178.MdlChecksum

Display model version information in your report.

Description

This check displays the following information for the current model:

• Version number
• Author
• Date
• Model checksum

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Could not retrieve model version and
checksum information.

This summary is provided for your
information. No action is required.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• “Reports for Code Generation” in the Simulink Coder documentation
• Radio Technical Commission for Aeronautics (RTCA) for information on the DO-178C

Software Considerations in Airborne Systems and Equipment Certification and
related standards

http://www.rtca.org/

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-89

IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

In this section...

“IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks” on page 3-89
“Check model object names” on page 3-91
“Display model metrics and complexity report” on page 3-94
“Check for unconnected objects” on page 3-96
“Check for root Inports with missing properties” on page 3-98
“Check for MATLAB Function interfaces with inherited properties” on page 3-100
“Check MATLAB Function metrics” on page 3-102
“Check for root Inports with missing range definitions” on page 3-104
“Check for root Outports with missing range definitions” on page 3-106
“Check for blocks not recommended for C/C++ production code deployment” on page
3-108
“Check usage of Stateflow constructs” on page 3-109
“Check state machine type of Stateflow charts” on page 3-115
“Check for model objects that do not link to requirements” on page 3-117
“Check for inconsistent vector indexing methods” on page 3-119
“Check MATLAB Code Analyzer messages” on page 3-121
“Check MATLAB code for global variables” on page 3-123
“Check usage of Math Operations blocks” on page 3-125
“Check usage of Signal Routing blocks” on page 3-127
“Check usage of Logic and Bit Operations blocks” on page 3-129
“Check usage of Ports and Subsystems blocks” on page 3-131
“Display configuration management data” on page 3-135

IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

IEC 61508, IEC 62304, ISO 26262, and EN 50128 checks facilitate designing and
troubleshooting models, subsystems, and the corresponding generated code for
applications to comply with IEC 61508-3, IEC 62304, ISO 26262-6, or EN 50128.

3 Model Advisor Checks

3-90

The Model Advisor performs a checkout of the Simulink Verification and Validation
license when you run the IEC 61508, IEC 62304, ISO 26262, or EN 50128 checks.

Tips

If your model uses model referencing, run the IEC 61508, IEC 62304, ISO 26262, or EN
50128 checks on all referenced models before running them on the top-level model.

See Also

• IEC 61508-3 Functional safety of electrical/electronic/programmable electronic safety-
related systems - Part 3: Software requirements

• IEC 62304 Medical device software - Software life cycle processes
• ISO 26262-6 Road vehicles - Functional safety - Part 6: Product development:

Software level
• EN 50128 Railway applications - Communications, signalling and processing systems

- Software for railway control and protection systems
• Embedded Coder documentation:

• “IEC 61508 Standard”
• “IEC 62304 Standard”
• “ISO 26262 Standard”
• “EN 50128 Standard”

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-91

Check model object names

Check ID: mathworks.iec61508.hisl_0032

Check model object names.

Description

This check verifies that the following model object names comply with your own modeling
guidelines or the high-integrity modeling guidelines. The check also verifies that the
model object does not use a reserved name.

• Blocks
• Signals
• Parameters
• Busses
• Stateflow objects

Reserved names:

• MATLAB keywords
• C keywords
• true, false
• int8 , uint8
• int16, uint16
• int32, uint32
• single, double

Available with Simulink Verification and Validation.

Input Parameters

To specify the naming standard and model object names that the check flags, use the
Model Advisor Configuration Editor.

1 Open the Model Configuration Editor and navigate to Check model object names.
In the Input Parameters pane, for each of the model objects, select one of the
following:

3 Model Advisor Checks

3-92

• MAAB to use the MAAB naming standard. When you select MAAB, the check uses
the regular expression (^.{32,}$)|([^a-zA-Z_0-9])|(^\d)|(^)|(__)|
(^_)|(_$) to verify that names:

• Use these characters: a-z, A-Z, 0-9, and the underscore (_).
• Do not start with a number.
• Do not use underscores at the beginning or end of a string.
• Do not use more than one consecutive underscore.
• Use strings that are less than 32 characters.

• Custom to use your own naming standard. When you select Custom, you can
enter your own Regular expression for prohibited <model object> names.
For example, if you want to allow more than one consecutive underscore, enter
(^.{32,}$)|([^a-zA-Z_0-9])|(^\d)|(^)|(^_)|(_$)

• None if you do not want the check to verify the model object name
2 Click Apply.
3 Save the configuration. When you run the check using this configuration, the check

uses the input parameters that you specified.

Results and Recommended Actions

Condition Recommended Action

The model object names do not comply with
the naming standard specified in the input
parameters.

Update the model object names to comply with your
own or the high-integrity guidelines.

Capabilities and Limitations

• Does not run on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• “hisl_0032: Model object names”
• MAAB guideline, Version 3.0: jc_0201: Usable characters for Subsystem names

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-93

• MAAB guideline, Version 3.0: jc_0211: Usable characters for Inport blocks and
Outport blocks

• MAAB guideline, Version 3.0: jc_0221: Usable characters for signal line names
• MAAB guideline, Version 3.0: jc_0231: Usable characters for block names
• MAAB guideline, Version 3.0: na_0030: Usable characters for Simulink Bus names

3 Model Advisor Checks

3-94

Display model metrics and complexity report

Check ID: mathworks.iec61508.MdlMetricsInfo

Display number of elements and name, level, and depth of subsystems for the model or
subsystem.

Description

The IEC 61508, ISO 26262, and EN 50128 standards recommend the usage of size
and complexity metrics to assess the software under development. This check provides
metrics information for the model. The provided information can be used to inspect
whether the size or complexity of the model or subsystem exceeds given limits. The check
displays:

• A block count for each Simulink block type contained in the given model, including
library linked blocks.

• A count of Stateflow constructs in the given model (if applicable).
• Name, level, and depth of the subsystems contained in the given model (if applicable).
• The maximum subsystem depth of the given model.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

N/A This summary is provided for your
information. No action is required.

Capabilities and Limitations

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Does not allow exclusions of blocks or charts.

See Also

• IEC 61508-3, Table B.9 (1) - Software module size limit, Table B.9 (2) - Software
complexity control

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-95

• IEC 62304, 5.5.3 - Software Unit acceptance criteria
• ISO 26262-6, Table 1 (1a) - Enforcement of low complexity, Table 3 (a) - Hierarchical

structure of software components, Table 3 (b) - Restricted size of software
components, and Table 3 (c) - Restricted size of interfaces

• EN 50128, Table A.12 (8) - Limited size and complexity of Functions, Subroutines and
Methods and (9) Limited number of subroutine parameters

• sldiagnostics in the Simulink documentation
• “Cyclomatic Complexity” in the Simulink Verification and Validation documentation

3 Model Advisor Checks

3-96

Check for unconnected objects

Check ID: mathworks.iec61508.UnconnectedObjects

Identify unconnected lines, input ports, and output ports in the model.

Description

Unconnected objects are likely to cause problems propagating signal attributes such as
data, type, sample time, and dimensions.

Ports connected to Ground or Terminator blocks pass this check.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

There are unconnected lines, input ports, or
output ports in the model or subsystem.

• Double-click an element in the list of
unconnected items to locate the item in
the model diagram.

• Connect the objects identified in the
results.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• IEC 61508-3, Table A.3 (3) - Language subset
• IEC 62304, 5.5.3 - Software Unit acceptance criteria
• ISO 26262-6, Table 1 (1b) - Use of language subsets, Table 1 (1d) - Use of defensive

implementation techniques
• EN 50128, Table A.4 (11) - Language Subset
• “Signal Basics”

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-97

3 Model Advisor Checks

3-98

Check for root Inports with missing properties

Check ID: mathworks.iec61508.RootLevelInports

Identify root model Inport blocks with missing or inherited sample times, data types or
port dimensions.

Description

Using root model Inport blocks that do not have defined sample time, data types or
port dimensions can lead to undesired simulation results. Simulink back-propagates
dimensions, sample times, and data types from downstream blocks unless you explicitly
assign these values. You can specify Inport block properties with block parameters or
Simulink signal objects that explicitly resolve to the connected signal lines. When you
run the check, a results table provides links to Inport blocks and signal objects that do
not pass, along with conditions triggering the warning.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Missing port dimension — Model
contains Inport blocks with inherited port
dimensions.

For the listed Inport blocks and Simulink
signal objects, specify port dimensions.

Missing signal data type — Model
contains Inport blocks with inherited data
types.

For the listed Inport blocks and Simulink
signal objects, specify data types.

Missing port sample time — Model
contains Inport blocks with inherited
sample times.

For the listed Inport blocks and Simulink
signal objects, specify sample times. The
sample times for root Inports with bus type
must match the sample times specified at
the leaf elements of the bus object.

Implicit resolution to a Simulink
signal object — Model contains Inport
block signal names that implicitly resolve
to a Simulink signal object in the base
workspace, model workspace, or Simulink
data dictionary.

For the listed Simulink signal objects, in
the property dialog, select signal property
Signal name must resolve to Simulink
signal object.

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-99

Capabilities and Limitations

• Does not run on library models.
• Allows exclusions of blocks and charts.

Tips

The following configuration passes this check:

• Inport blocks with inherited sample times in conjunction with the Periodic sample
time constraint menu set to Ensure sample time independent

See Also

• IEC 61508-3, Table B.9 (6) - Fully defined interface
• IEC 62304, 5.5.3 - Software Unit acceptance criteria
• ISO 26262-4, Table 2 (2) - Precisely defined interfaces
• EN 50128, Table A.3 (19) - Fully Defined Interface
• “About Data Types in Simulink” in the Simulink documentation
• “Determine Output Signal Dimensions” in the Simulink documentation
• “Specify Sample Time” in the Simulink documentation
• “hisl_0024: Inport interface definition”

3 Model Advisor Checks

3-100

Check for MATLAB Function interfaces with inherited properties

Check ID: mathworks.iec61508.himl_0002

Identify MATLAB Functions that have inputs, outputs or parameters with inherited
complexity or data type properties.

Description

The check identifies MATLAB Functions with inherited complexity or data type
properties. A results table provides links to MATLAB Functions that do not pass the
check, along with conditions triggering the warning.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

MATLAB Functions have inherited
interfaces.

Explicitly define complexity and data
type properties for inports, outports,
and parameters of MATLAB Functions
identified in the results.

If applicable, using the “MATLAB
Function Block Editor”, make the following
modifications in the “Ports and Data
Manager”:

• Change Complexity from Inherited
to On or Off.

• Change Type from Inherit: Same as
Simulink to an explicit type.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-101

See Also

• IEC 61508-3, Table B.9 (6) - Fully defined interface
• IEC 62304, 5.5.3 - Software Unit acceptance criteria
• ISO 26262-6, Table 1 (1f) - Use of unambiguous graphical representation
• EN 50128, Table A.1 (11) - Software Interface Specifications
• “himl_0002: Strong data typing at MATLAB function boundaries”

3 Model Advisor Checks

3-102

Check MATLAB Function metrics

Check ID: mathworks.iec61508.himl_0003

Display complexity and code metrics for MATLAB Functions. Report metric violations.

Description

The IEC 61508, ISO 26262, and EN 50128 standards recommend the usage of size
and complexity metrics to assess the software under development. This check provides
complexity and code metrics for MATLAB Functions. The check additionally reports
metric violations.

A results table provides links to MATLAB Functions that violate the complexity input
parameters.

Available with Simulink Verification and Validation.

Input Parameters

Maximum effective lines of code per function
Provide the maximum effective lines of code per function. Effective lines do not
include empty lines, comment lines, or lines with a function end keyword.

Minimum density of comments
Provide minimum density of comments. Density is ratio of comment lines to total
lines of code.

Maximum cyclomatic complexity per function
Provide maximum cyclomatic complexity per function. Cyclomatic complexity is the
number of linearly independent paths through the source code.

Results and Recommended Actions

Condition Recommended Action

MATLAB Function violates the complexity
input parameters.

For the MATLAB Function:

• If effective lines of code is too high,
further divide the MATLAB Function.

• If comment density is too low, add
comment lines.

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-103

Condition Recommended Action

• If cyclomatic complexity per function is
too high, further divide the MATLAB
Function.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• IEC 61508-3, Table B.9 (6) - Fully defined interface
• IEC 62304, 5.5.3 - Software Unit acceptance criteria
• ISO 26262-6, Table 1 (1f) - Use of unambiguous graphical representation
• EN 50128, Table A.1(11) - Software Interface Specifications
• “himl_0003: Limitation of MATLAB function complexity”

3 Model Advisor Checks

3-104

Check for root Inports with missing range definitions

Check ID: mathworks.iec61508.InportRange

Identify root level Inport blocks with missing or erroneous minimum or maximum range
values.

Description

The check identifies root level Inport blocks with missing or erroneous minimum or
maximum range values. You can specify Inport block minimum and maximum values
with block parameters or Simulink signal objects that explicitly resolve to the connected
signal lines. A results table provides links to Inport blocks and signal objects that do not
pass the check, along with conditions triggering the warning.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Missing range — Model contains Inport
blocks with numeric data types that have
missing range parameters (minimum and/
or maximum).

For the listed Inport blocks and Simulink
signal objects, specify scalar minimum and
maximum parameters.

Missing range(s) for bus object — Bus
objects defining the Inport blocks have leaf
elements with missing ranges.

For the listed leaf elements, to specify
the model interface range, provide scalar
minimum and maximum parameters .

Range specified will be ignored —
Minimum or maximum values at Inports or
Simulink signal objects are not supported
for bus data types. The values are ignored
during range checking.

To enable range checking, specify minimum
and maximum signal values on the leaf
elements of the bus objects defining the
data type.

To enable the use of minimum and
maximum values with bus objects, set
configuration parameter Diagnostics >
Connectivity > Buses > Mux blocks
used to create bus signals to error.

No data type specified — Model contains
Inport blocks or Simulink signal objects
with inherited data types.

Specify one of the supported data types:

• Enum

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-105

Condition Recommended Action

• Simulink.AliasType

• Simulink.Bus

• Simulink.NumericType

• build-in
Implicit resolution to a Simulink
signal object — Model contains Inport
block signal names that implicitly resolve
to a Simulink signal object in the base
workspace, model workspace, or Simulink
data dictionary.

For the listed Simulink signal objects, in
the property dialog, select signal property
Signal name must resolve to Simulink
signal object.

Capabilities and Limitations

• Does not run on library models.
• Allows exclusions of blocks and charts.

See Also

• IEC 61508-3, Table B.9 (6) – Fully defined interface
• IEC 62304, 5.5.3 - Software Unit acceptance criteria
• ISO 26262-6, Table 2 (2) – Precisely defined interfaces
• EN 50128, Table A.1(11) – Software Interface Specifications, Table A.3(19) – Fully

Defined Interface
• “hisl_0025: Design min/max specification of input interfaces”

3 Model Advisor Checks

3-106

Check for root Outports with missing range definitions

Check ID: mathworks.iec61508.OutportRange

Identify root level Outport blocks with missing or erroneous minimum or maximum
range values.

Description

The check identifies root level Outport blocks with missing or erroneous minimum or
maximum range values. You can specify Outport block minimum and maximum values
with block parameters or Simulink signal objects that explicitly resolve to the connected
signal lines. A results table provides links to Outport blocks that do not pass the check,
along with conditions triggering the warning.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Missing range — Model contains Outport
blocks with numeric data types that have
missing range parameters (minimum and/
or maximum).

For the listed Outport blocks and Simulink
signal objects, specify scalar minimum and
maximum parameters.

Missing range(s) for bus object — Bus
objects defining the Outport blocks have
leaf elements with missing ranges.

For the listed leaf elements, to specify
the model interface range, provide scalar
minimum and maximum parameters.

Range specified at Outport will be
ignored — Minimum or maximum values
at Outports or Simulink signal objects
are not supported for bus data types. The
values are ignored during range checking.

To enable range checking, specify minimum
and maximum signal values on the leaf
elements of the bus objects defining the
data type.

To enable the use of minimum and
maximum values with bus objects, set
configuration parameter Diagnostics >
Connectivity > Buses > Mux blocks
used to create bus signals to error.

No bus data type specified — Model
contains Outport block or Simulink signal
objects with inherited bus data types.

For the Outport blocks and Simulink signal
objects, specify one of the supported data
types:

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-107

Condition Recommended Action

• Enum

• Simulink.AliasType

• Simulink.Bus

• Simulink.NumericType

• build-in
Implicit resolution to a Simulink
signal object — Model contains Outport
block signal names that implicitly resolve
to a Simulink signal object in the base
workspace, model workspace, or Simulink
data dictionary.

For the listed Simulink signal objects, in
the property dialog, select signal property
Signal name must resolve to Simulink
signal object.

Capabilities and Limitations

• Does not run on library models.
• Allows exclusions of blocks and charts.

See Also

• IEC 61508-3, Table B.9 (6) – Fully defined interface
• IEC 62304, 5.5.3 - Software Unit acceptance criteria
• ISO 26262-6, Table 2 (2) - Precisely defined interfaces
• EN 50128, Table A.1(11) – Software Interface Specifications, Table A.3(19) – Fully

Defined Interface
• “hisl_0026: Design min/max specification of output interfaces”

3 Model Advisor Checks

3-108

Check for blocks not recommended for C/C++ production code
deployment

Check ID: mathworks.iec61508.PCGSupport

Identify blocks not supported by code generation or not recommended for C/C++
production code deployment.

Description

This check partially identifies model constructs that are not recommended for C/C+
+ production code generation as identified in the Simulink Block Support tables for
Simulink Coder and Embedded Coder. If you are using blocks with support notes for code
generation, review the information and follow the given advice.

Available with Simulink Verification and Validation and Embedded Coder.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains blocks
that should not be used for production code
deployment.

Consider replacing the blocks listed in the
results. Click an element from the list of
questionable items to locate condition.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• IEC 61508-3, Table A.3 (3) - Language subset
• IEC 62304, 5.5.3 - Software Unit acceptance criteria
• ISO 26262-6, Table 1 (1b) - Use of language subsets
• EN 50128, Table A.4 (11) - Language Subset
• “Supported Products and Block Usage”

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-109

Check usage of Stateflow constructs

Check ID: mathworks.iec61508.StateflowProperUsage

Identify usage of Stateflow constructs that might impact safety.

Description

This check identifies instances of Stateflow software being used in a way that can impact
an application's safety, including:

• Use of strong data typing
• Port name mismatches
• Scope of data objects and events
• Formatting of state action statements
• Ordering of states and transitions
• Unreachable code
• Indeterminate execution time

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

A Stateflow chart is not configured for
strong data typing on boundaries between
a Simulink model and the Stateflow chart.
See:

• “hisf_0009: Strong data typing
(Simulink and Stateflow boundary)”

• IEC 61508-3, Table A.3 (2) - Strongly
typed programming language

• IEC 62304, 5.5.3 - Software Unit
acceptance criteria

• ISO 26262-6, Table 1 (1c) - Enforcement
of strong typing

• EN 50128, Table A.4 (8) - Strongly
Typed Programming Language

In the Chart properties dialog box, select
Use Strong Data Typing with Simulink
I/O for the Stateflow chart. When you
select this check box, the Stateflow chart
accepts input signals of any data type that
Simulink models support, provided that the
type of the input signal matches the type
of the corresponding Stateflow input data
object.

3 Model Advisor Checks

3-110

Condition Recommended Action

Signals have names that differ from those
of their corresponding Stateflow ports. See:

• IEC 61508-3, Table A.3 (3) - Language
subset

• IEC 62304, 5.5.3 - Software Unit
acceptance criteria

• ISO 26262-6, Table 1 (1b) - Use of
language subsets

• EN 50128, Table A.4 (11) - Language
Subset

• Check whether the ports are connected
and, if not, fix the connections.

• Change the names of the signals or
the Stateflow ports so that the names
match.

Local data is not defined in the Stateflow
hierarchy at the chart level or below. See:

• IEC 61508-3, Table A.3 (3) - Language
subset

• IEC 62304, 5.5.3 - Software Unit
acceptance criteria

• ISO 26262-6, Table 1 (1b) - Use of
language subsets

• EN 50128, Table A.4 (11) - Language
Subset

Define local data at the chart level or
below.

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-111

Condition Recommended Action

A new line is missing from a state action
after:

• An entry (en), during (du), or exit
(ex) statement

• The semicolon (;) at the end of an
assignment statement

See:

• IEC 61508-3, Table A.3 (3) - Language
subset

• IEC 62304, 5.5.3 - Software Unit
acceptance criteria

• ISO 26262-6, Table 1 (1b) - Use of
language subsets

• EN 50128, Table A.4 (11) - Language
Subset

Add missing new lines.

Stateflow charts have User specified
state/transition execution order
cleared. See:

• “hisf_0002: User-specified state/
transition execution order”

• IEC 61508-3, Table A.3 (3) - Language
subset

• IEC 62304, 5.5.3 - Software Unit
acceptance criteria

• ISO 26262-6, Table 1 (1b) - Use of
language subsets, Table 1 (1f) - Use of
unambiguous graphical representation

• EN 50128, Table A.4 (11) - Language
Subset

For the specified charts, in the Chart
Properties dialog box, select User
specified state/transition execution
order.

3 Model Advisor Checks

3-112

Condition Recommended Action

Any of the following:

• Wrap on overflow is not set to error.
• Simulation range checking is not set

to error.
• Detect Cycles is cleared.

See:

• “hisf_0011: Stateflow debugging
settings”

• IEC 61508-3, Table A.3 (3) - Language
subset

• IEC 62304, 5.5.3 - Software Unit
acceptance criteria

• ISO 26262-6, Table 1 (1d) - Use of
defensive implementation techniques

• EN 50128, Table A.3 (1) - Defensive
Programming

• EN 50128, Table A.4 (11) - Language
Subset

In the Configuration Parameters dialog
box, set:

• Diagnostics > Data Validity > Wrap
on overflow to error.

• Diagnostics > Data Validity >
Simulation range checking to error.

In the model window, select:

• Simulation > Debug > MATLAB &
Stateflow Error Checking Options >
Detect Cycles.

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-113

Condition Recommended Action

The Stateflow chart contains a data object
identifier defined in two or more scopes.
See:

• “hisl_0061: Unique identifiers for
clarity”

• IEC 61508-3, Table A.3 (3) - Language
subset, Table A.4 (5) - Design and
coding standards

• IEC 62304, 5.5.3 - Software Unit
acceptance criteria

• ISO 26262-6, Table 1 (1b) - Use of
language subsets, Table 1 (1e) - Use
of established design principles, Table
1 (1f) - Use of unambiguous graphical
representation, Table 1 (1g) - Use
of style guides, Table 1 (1h) - Use of
naming conventions

• EN 50128, Table A.4 (11) - Language
Subset, Table A.12 (1) - Coding
Standard, Table A.12 (2) - Coding Style
Guide

For the identified chart, do one of the
following:

• Create a unique data object identifier
within each of the scopes.

• Create a unique data object identifier
within the chart, at the parent level.

Capabilities and Limitations

• Does not run on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts. Exclusions will not work for library linked

charts.

See Also

See the following topics in the Stateflow documentation:

• “Strong Data Typing with Simulink I/O”
• “Property Fields”

3 Model Advisor Checks

3-114

• “How Events Work in Stateflow Charts”
• “Add Data”
• “Label States”
• “Chart Properties”
• “Chart Architecture”

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-115

Check state machine type of Stateflow charts

Check ID: mathworks.iec61508.hisf_0001

Identify whether Stateflow charts are all Mealy or all Moore charts.

Description

Compares the state machine type of all Stateflow charts to the type that you specify in
the input parameters.

Available with Simulink Verification and Validation.

Input Parameters

Mealy or Moore
Check whether charts use the same state machine type, and are all Mealy or all
Moore charts.

Mealy
Check whether all charts are Mealy charts.

Moore
Check whether all charts are Moore charts.

Results and Recommended Actions

Condition Recommended Action

The input parameter is set to Mealy or
Moore and charts in the model use either of
the following:

• Classic state machine types.
• Multiple state machine types.

For each chart, in the Chart Properties
dialog box, specify State Machine Type to
either Mealy or Moore. Use the same state
machine type for all charts in the model.

The input parameter is set to Mealy
and charts in the model use other state
machine types.

For each chart, in the Chart Properties
dialog box, specify State Machine Type to
Mealy.

The input parameter is set to Moore
and charts in the model use other state
machine types.

For each chart, in the Chart Properties
dialog box, specify State Machine Type to
Moore.

3 Model Advisor Checks

3-116

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• IEC 61508-3, Table A.3 (3) - Language subset
• IEC 62304, 5.5.3 - Software Unit acceptance criteria
• ISO 26262-6, Table 1 (1b) - Use of language subsets
• EN 50128, Table A.4 (11) - Language Subset
• “hisf_0001: Mealy and Moore semantics”
• “Overview of Mealy and Moore Machines” in the Stateflow documentation.
• “Chart Properties”
• “Chart Architecture”

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-117

Check for model objects that do not link to requirements

Check ID: mathworks.iec61508.RequirementInfo

Check whether Simulink blocks and Stateflow objects link to a requirements document.

Description

This check verifies whether Simulink blocks and Stateflow objects link to a document
containing engineering requirements for traceability.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Blocks do not link to a requirements
document.

Link to requirements document. See
“Link to Requirements Document Using
Selection-Based Linking”.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Allows exclusions of blocks and charts.

Tip

Run this check from the top model or subsystem that you want to check.

See Also

• IEC 61508-3, Table A.2 (12) - Computer-aided specification and design tools, Table
A.2 (9) - Forward traceability between the software safety requirements specification
and software architecture, Table A.2 (10) - Backward traceability between the
software safety requirements specification and software architecture, Table A.4 (8)
- Forward traceability between the software safety requirements specification and
software design, Table A.8 (1) - Impact analysis

• IEC 62304, 5.2 - Software requirements analysis, 7.4.2 - Analyze impact of software
changes on existing risk control measures

3 Model Advisor Checks

3-118

• ISO 26262-6, Table 8 (1a) - Documentation of the software unit design in natural
language, ISO 26262-6: 7.4.2.a - The verifiability of the software architectural design,
ISO 26262-8: 8.4.3 Change request analysis

• EN 50128, Table A.3 (23) - Modeling supported by computer aided design and
specification tools, Table D.58 - Traceability, Table A.10 (1) - Impact Analysis

• “Requirements Traceability”

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-119

Check for inconsistent vector indexing methods

Check ID: mathworks.iec61508.hisl_0021

Identify blocks with inconsistent indexing method.

Description

Using inconsistent block indexing methods can result in modeling errors. You should
use a consistent vector indexing method for all blocks. This check identifies blocks with
inconsistent indexing methods. The indexing methods are zero-based, one-based or user-
specified.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains blocks
with inconsistent indexing methods. The
indexing methods are zero-based, one-
based or user-specified.

Modify the model to use a single consistent
indexing method.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Allows exclusions of blocks and charts.

See Also

• IEC 61508–3, Table A.3 (3) - Language subset, Table A.4 (5) - Design and coding
standards

• IEC 62304, 5.5.3 - Software Unit acceptance criteria
• ISO 26262-6, Table 1 (1b) - Use of language subsets, Table 1 (1e) - Use of established

design principles, Table 1 (1f) - Use of unambiguous graphical representation, Table 1
(1g) - Use of style guides, Table 1 (1h) - Use of naming conventions

• EN 50128, Table A.4 (11) - Language Subset, Table A.12 (1) - Coding Standard

3 Model Advisor Checks

3-120

• “hisl_0021: Consistent vector indexing method”

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-121

Check MATLAB Code Analyzer messages

Check ID: mathworks.iec61508.himl_0004

Check MATLAB Functions for %#codegen directive, MATLAB Code Analyzer messages,
and justification message IDs.

Description

Verifies %#codegen directive, MATLAB Code Analyzer messages, and justification
message IDs for:

• MATLAB code in MATLAB Function blocks
• MATLAB functions defined in Stateflow charts
• Called MATLAB functions

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

For MATLAB code in MATLAB Function
blocks, either of the following:

• Code lines are not justified with a %#ok
comment.

• Codes lines justified with %#ok do not
specify a message id.

• Implement MATLAB Code Analyzer
recommendations.

• Justify not following MATLAB Code
Analyzer recommendations with a %#ok
comment.

• Specify justified code lines with
a message id. For example,
%#ok<NOPRT>.

For MATLAB functions defined in
Stateflow charts, either of the following:

• Code lines are not justified with a %#ok
comment.

• Codes lines justified with %#ok do not
specify a message id.

• Implement MATLAB Code Analyzer
recommendations.

• Justify not following MATLAB Code
Analyzer recommendations with a %#ok
comment.

• Specify justified code lines with
a message id. For example,
%#ok<NOPRT>.

3 Model Advisor Checks

3-122

Condition Recommended Action

For called MATLAB functions:

• Code does not have the %#codegen
directive.

• Code lines are not justified with a %#ok
comment.

• Codes lines justified with %#ok do not
specify a message id.

• Insert %#codegen directive in the
MATLAB code.

• Implement MATLAB Code Analyzer
recommendations.

• Justify not following MATLAB Code
Analyzer recommendations with a %#ok
comment.

• Specify justified code lines with
a message id. For example,
%#ok<NOPRT>.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Does not allow exclusions of blocks or charts.

See Also

• IEC 61508-3, Table A.3 (3) - Language subset, Table A.4 (3) - Defensive programming,
Table A.4 (5) - Design and coding standards

• IEC 62304, 5.5.3 - Software Unit acceptance criteria
• ISO 26262-6, Table 1 (1b) - Use of language subsets, Table 1 (1d) - Use of defensive

implementation techniques, Table 1 (1e) - Use of established design principles, Table
1 (1f) - Use of unambiguous graphical representation, Table 1 (1g) - Use of style
guides, Table 1 (1h) - Use of naming conventions

• EN 50128, Table A.4 (11) - Language Subset, Table A.3 (1) - Defensive Programming,
Table A.12 (1) - Coding Standard, Table A.12 (2) - Coding Style Guide

• “Check Code for Errors and Warnings”
• “himl_0004: MATLAB Code Analyzer recommendations for code generation”

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-123

Check MATLAB code for global variables

Check ID: mathworks.iec61508.himl_0005

Check for global variables in MATLAB code.

Description

Verifies that global variables are not used in any of the following:

• MATLAB code in MATLAB Function blocks
• MATLAB functions defined in Stateflow charts
• Called MATLAB functions

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Global variables are used in one or more of
the following:

• MATLAB code in MATLAB Function
blocks

• MATLAB functions defined in Stateflow
charts

• Called MATLAB functions

Replace global variables with signal lines,
function arguments, or persistent data.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Does not allow exclusions of blocks or charts.

See Also

• IEC 61508-3, Table A.3 (3) – Language subset
• IEC 62304, 5.5.3 - Software Unit acceptance criteria

3 Model Advisor Checks

3-124

• ISO 26262-6, Table 1 (1b) - Use of language subsets
• EN 50128, Table A.4 (11) - Language Subset
• “himl_0005: Usage of global variables in MATLAB functions”

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-125

Check usage of Math Operations blocks

Check ID: mathworks.iec61508.MathOperationsBlocksUsage

Identify usage of Math Operation blocks that might impact safety.

Description

This check inspects the usage of the following blocks:

• Abs

• Assignment

• Gain

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains an
Absolute Value block that is operating
on one of the following:

• A boolean or an unsigned input
data type. This condition results in
unreachable simulation pathways
through the model and might result in
unreachable code

• A signed integer value with the
Saturate on integer overflow check
box not selected. For signed data types,
the absolute value of the most negative
value is problematic because it is not
representable by the data type. This
condition results in an overflow in the
generated code.

If the identified Absolute Value block
is operating on a boolean or unsigned data
type, do one of the following:

• Change the input of the Absolute
Value block to a signed input type.

• Remove the Absolute Value block
from the model.

If the identified Absolute Value block
is operating on a signed data type, in the
Block Parameters > Signal Attributes
dialog box, select Saturate on integer
overflow.

The model or subsystem contains Gain
blocks with a of value 1 or an identity
matrix.

If you are using Gain blocks as buffers,
consider replacing them with Signal
Conversion blocks.

3 Model Advisor Checks

3-126

Condition Recommended Action

The model or subsystem might contain
Assignment blocks with incomplete
array initialization that do not have block
parameter Action if any output element
is not assigned set to Error or Warning.

Set block parameter Action if any output
element is not assigned to one of the
recommended values:

• Error, if Assignment block is not in an
Iterator subsystem.

• Warning, if Assignment block is in an
Iterator subsystem.

Capabilities and Limitations

• Does not run on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• IEC 61508-3, Table A.3 (3) - Language subset, Table A.4 (3) - Defensive programming,
Table A.3 (2) - Strongly typed programming language, Table B.8 (3) - Control Flow
Analysis

• IEC 62304, 5.5.3 - Software Unit acceptance criteria
• ISO 26262-6, Table 1 (1b) - Use of language subsets, Table 1 (1d) - Use of defensive

implementation techniques, Table 9 (1f) - Control flow analysis
• EN 50128, Table A.4 (11) - Language Subset, Table A.3 (1) - Defensive Programming,

EN 50128, Table A.4 (8) - Strongly Typed Programming Language, Table A.19 (3) -
Control Flow Analysis

• MISRA C:2012, Dir 4.1
• MISRA C:2012, Rule 9.1
• “hisl_0001: Usage of Abs block”
• “hisl_0029: Usage of Assignment blocks”

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-127

Check usage of Signal Routing blocks

Check ID: mathworks.iec61508.SignalRoutingBlockUsage

Identify usage of Signal Routing blocks that might impact safety.

Description

This check identifies model or subsystem Switch blocks that might generate code
with inequality operations (~=) in expressions that contain a floating-point variable or
constant.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains a Switch
block that might generate code with
inequality operations (~=) in expressions
where at least one side of the expression
contains a floating-point variable or
constant. The Switch block might cause
floating-point inequality comparisons in
the generated code.

For the identified block, do one of the
following:

• For the control input block, change the
Data type parameter setting.

• Change the Switch block Criteria for
passing first input parameter setting.
This might change the algorithm.

Capabilities and Limitations

• Does not run on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• IEC 61508-3, Table A.3 (3) – Language subset, Table A.4 (3) – Defensive
programming

• IEC 62304, 5.5.3 - Software Unit acceptance criteria
• ISO 26262-6, Table 1 (1b) - Use of language subsets, Table 1 (1d) - Use of defensive

implementation techniques

3 Model Advisor Checks

3-128

• EN 50128, Table A.4 (11) - Language Subset, Table A.3 (1) - Defensive Programming
• MISRA C:2012, Dir 1.1

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-129

Check usage of Logic and Bit Operations blocks

Check ID: mathworks.iec61508.LogicBlockUsage

Identify usage of Logical Operator and Bit Operations blocks that might impact
safety.

Description

This check inspects the usage of:

• Blocks that compute relational operators, including Relational Operator,
Compare To Constant, Compare To Zero, and Detect Change blocks

• Logical Operator blocks

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains a block
computing a relational operator that is
operating on different data types. The
condition can lead to unpredictable results
in the generated code.

On the Block Parameters > Signal
Attributes pane, set the Output data type
to boolean for the specified blocks.

The model or subsystem contains a block
computing a relational operator that uses
the == or ~= operator to compare floating-
point signals. The use of these operators
on floating-point signals is unreliable and
unpredictable because of floating-point
precision issues. These operators can lead
to unpredictable results in the generated
code.

For the identified block, do one of the
following:

• Change the signal data type.
• Rework the model to eliminate using

== or ~= operators on floating-point
signals.

The model or subsystem contains a
Logical Operator block that has inputs
or outputs that are not Boolean inputs or
outputs. The block might result in floating-
point equality or inequality comparisons in
the generated code.

• Modify the Logical Operator block
so that the inputs and outputs are
Boolean. On the Block Parameters
> Signal Attributes pane, consider
selecting Require all inputs to have

3 Model Advisor Checks

3-130

Condition Recommended Action

the same data type and setting
Output data type to boolean.

• In the Configuration Parameters dialog
box, on the All Parameters pane,
consider selecting the Implement logic
signals as boolean data (vs. double).

Capabilities and Limitations

• Does not run on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• IEC 61508-3, Table A.3 (2) – Strongly typed programming language, Table A.3 (3) –
Language subset, Table A.4 (3) - Defensive programming

• IEC 62304, 5.5.3 - Software Unit acceptance criteria
• ISO 26262-6, Table 1 (1c) - Enforcement of strong typing, Table 1 (1b) - Use of

language subsets
• EN 50128 - Table A.4 (8) - Strongly Typed Programming Language, Table A.4 (11) -

Language Subset, Table A.3 (1) - Defensive Programming
• MISRA C:2012, Dir 1.1
• MISRA C:2012, Rule 10.1
• “hisl_0016: Usage of blocks that compute relational operators”
• “hisl_0017: Usage of blocks that compute relational operators (2)”
• “hisl_0018: Usage of Logical Operator block”

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-131

Check usage of Ports and Subsystems blocks

Check ID: mathworks.iec61508.PortsSubsystemsUsage

Identify usage of Ports and Subsystems blocks that might impact safety.

Description

This check inspects the usage of:

• For Iterator blocks
• While Iterator blocks
• If blocks
• Switch Case blocks

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains a
For Iterator block that has variable
iterations. This condition can lead to
unpredictable execution times or infinite
loops in the generated code.

For the identified For Iterator blocks,
do one of the following:

• Set the Iteration limit source
parameter to internal.

• If the Iteration limit source
parameter must be external, use a
Constant, Probe, or Width block as
the source.

• Clear the Set next i (iteration
variable) externally check box.

• Consider selecting the Show iteration
variable check box and observe the
iteration value during simulation.

The model or subsystem contains a While
Iterator block that has unlimited
iterations. This condition can lead to
infinite loops in the generated code.

For the identified While Iterator blocks:

• Set the Maximum number of
iterations (-1 for unlimited)
parameter to a positive integer value.

3 Model Advisor Checks

3-132

Condition Recommended Action

• Consider selecting the Show iteration
number port check box and observe
the iteration value during simulation.

The model or subsystem contains an
If block with an If expression or Elseif
expressions that might cause floating-
point equality or inequality comparisons in
generated code.

Modify the expressions in the If block to
avoid floating-point equality or inequality
comparisons in generated code.

The model or subsystem contains an If
block using Elseif expressions without an
Else condition.

In the If block Block Parameters dialog
box, select Show else condition. Connect
the resulting Else output port to an If
Action Subsystem block.

The model or subsystem contains an If
block with output ports that do not connect
to If Action Subsystem blocks.

Verify that output ports of the If block
connect to If Action Subsystem blocks.

The model or subsystem contains an
Switch Case block without a default case.

In the Switch Case block Block
Parameters dialog box, select Show
default case. Connect the resulting
default output port to a Switch Case
Action Subsystem block.

The model or subsystem contains a Switch
Case block with an output port that does
not connect to a Switch Case Action
Subsystem block.

Verify that output ports of the Switch
Case blocks connect to Switch Case
Action Subsystem blocks.

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-133

Condition Recommended Action

The model or subsystem contains one of the
following time-dependent blocks in a For
Iterator or While Iterator subsystem:

• Discrete Filter

• Discrete FIR Filter

• Discrete State-Space

• Discrete Transfer Fcn

• Discrete Zero-Pole

• Transfer Fcn First Order

• Transfer Fcn Lead or Lag

• Transfer Fnc Real Zero

• Discrete Derivative

• Discrete Transfer Fcn (with

initial outputs)

• Discrete Transfer Fcn (with

initial states)

• Discrete Zero-Pole (with

initial outputs)

• Discrete Zero-Pole (with

initial states)

In the model or subsystem, consider
removing the time-dependent blocks.

Capabilities and Limitations

• Does not run on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• IEC 61508-3, Table A.3 (3) - Language subset, Table A.4 (3) - Defensive programming
• IEC 62304, 5.5.3 - Software Unit acceptance criteria

3 Model Advisor Checks

3-134

• ISO 26262-6, Table 1 (1b) - Use of language subsets, Table 1 (1d) - Use of defensive
implementation techniques

• EN 50128 - Table A.4 (11) - Language Subset, Table A.3 (1) - Defensive Programming
• MISRA C:2012, Rule 14.2
• MISRA C:2012, Rule 16.4
• MISRA C:2012, Dir 4.1
• “hisl_0006: Usage of While Iterator blocks”
• “hisl_0007: Usage of While Iterator subsystems”
• “hisl_0008: Usage of For Iterator Blocks”
• “hisl_0009: Usage of For Iterator Subsystem blocks”

 IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks

3-135

Display configuration management data

Check ID: mathworks.iec61508.MdlVersionInfo

Display model configuration and checksum information.

Description

This informer check displays the following information for the current model:

• Model version number
• Model author
• Date
• Model checksum

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Could not retrieve model version and
checksum information.

This summary is provided for your
information. No action is required.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• IEC 61508-3, Table A.8 (5) – Software configuration management
• IEC 62304-8 – Software configuration management process
• ISO 26262-8, Clause 7 – Configuration management
• EN 50128, Table A.9 (5) – Software Configuration Management
• “How Simulink Helps You Manage Model Versions” in the Simulink documentation
• Model Change Log in the Simulink Report Generator documentation
• Simulink.BlockDiagram.getChecksum in the Simulink documentation
• Simulink.SubSystem.getChecksum in the Simulink documentation

3 Model Advisor Checks

3-136

MathWorks Automotive Advisory Board Checks

In this section...

“MathWorks Automotive Advisory Board Checks” on page 3-138
“Check font formatting” on page 3-139
“Check Transition orientations in flow charts” on page 3-141
“Check for nondefault block attributes” on page 3-143
“Check signal line labels” on page 3-145
“Check for propagated signal labels” on page 3-147
“Check default transition placement in Stateflow charts” on page 3-149
“Check return value assignments of graphical functions in Stateflow charts” on page
3-150
“Check entry formatting in State blocks in Stateflow charts” on page 3-151
“Check usage of return values from a graphical function in Stateflow charts” on page
3-152
“Check for pointers in Stateflow charts” on page 3-153
“Check for event broadcasts in Stateflow charts” on page 3-154
“Check transition actions in Stateflow charts” on page 3-155
“Check for MATLAB expressions in Stateflow charts” on page 3-156
“Check for indexing in blocks” on page 3-157
“Check file names” on page 3-159
“Check folder names” on page 3-161
“Check for prohibited blocks in discrete controllers” on page 3-162
“Check for prohibited sink blocks” on page 3-164
“Check positioning and configuration of ports” on page 3-166
“Check for matching port and signal names” on page 3-168
“Check whether block names appear below blocks” on page 3-169
“Check for mixing basic blocks and subsystems” on page 3-170
“Check for unconnected ports and signal lines” on page 3-172
“Check position of Trigger and Enable blocks” on page 3-173
“Check usage of tunable parameters in blocks” on page 3-174

 MathWorks Automotive Advisory Board Checks

3-137

In this section...

“Check Stateflow data objects with local scope” on page 3-175
“Check for Strong Data Typing with Simulink I/O” on page 3-176
“Check usage of exclusive and default states in state machines” on page 3-177
“Check Implement logic signals as Boolean data (vs. double)” on page 3-179
“Check model diagnostic parameters” on page 3-180
“Check the display attributes of block names” on page 3-183
“Check display for port blocks” on page 3-185
“Check subsystem names” on page 3-186
“Check port block names” on page 3-188
“Check character usage in signal labels” on page 3-190
“Check character usage in block names” on page 3-192
“Check Trigger and Enable block names” on page 3-194
“Check for Simulink diagrams using nonstandard display attributes” on page 3-195
“Check MATLAB code for global variables” on page 3-197
“Check visibility of block port names” on page 3-199
“Check orientation of Subsystem blocks” on page 3-201
“Check usage of Relational Operator blocks” on page 3-202
“Check usage of Switch blocks” on page 3-203
“Check usage of buses and Mux blocks” on page 3-204
“Check for bitwise operations in Stateflow charts” on page 3-205
“Check for comparison operations in Stateflow charts” on page 3-207
“Check for unary minus operations on unsigned integers in Stateflow charts” on page
3-208
“Check for equality operations between floating-point expressions in Stateflow charts”
on page 3-209
“Check input and output settings of MATLAB Functions” on page 3-210
“Check MATLAB Function metrics” on page 3-212
“Check for mismatches between names of Stateflow ports and associated signals” on
page 3-214

3 Model Advisor Checks

3-138

In this section...

“Check scope of From and Goto blocks” on page 3-215

MathWorks Automotive Advisory Board Checks

MathWorks Automotive Advisory Board (MAAB) checks facilitate designing and
troubleshooting models from which code is generated for automotive applications.

The Model Advisor performs a checkout of the Simulink Verification and Validation
license when you run the MAAB checks.

See Also

• “Run Model Checks” in the Simulink documentation.
• “Simulink Checks” in the Simulink reference documentation.
• “Simulink Coder Checks” in the Simulink Coder documentation.
• “MAAB Control Algorithm Modeling” guidelines
• The MathWorks Automotive Advisory Board on the MathWorks website, which lists

downloads for the latest version of Control Algorithm Modeling Guidelines Using
MATLAB, Simulink, and Stateflow

http://www.mathworks.com/industries/auto/maab.html

 MathWorks Automotive Advisory Board Checks

3-139

Check font formatting

Check ID: mathworks.maab.db_0043

Check for difference in font and font sizes.

Description

With the exception of free text annotations within a model, text elements, such as block
names, block annotations, and signal labels, must have the same font style and font
size. Select a font style and font size that is legible and portable (convertible between
platforms), such as Arial or Times New Roman 12 point.

Available with Simulink Verification and Validation.

Input Parameters

Font Name
Apply the specified font to all text elements. When you specify Common (default),
the check identifies different fonts used in your model. Although you can specify
other fonts, the fonts available from the drop-down list are Arial, Courier New,
Georgia, Times New Roman, Arial Black, and Verdana.

Font Size
Apply the specified font size to all text elements. When you specify Common (default),
the check identifies different font sizes used in your model. Although you can specify
other font sizes, the font sizes available from the drop-down list are 6, 8, 9, 10, 12,
14, 16.

Font Style
Apply the specified font style to all text elements. When you specify Common (default),
the check identifies different font styles used in your model. The font styles available
from the drop-down list are normal, bold, italic, and bold italic.

Results and Recommended Actions

Condition Recommended Action

The fonts or font sizes for text elements in
the model are not consistent or portable.

Specify values for the font parameters
and click Modify all Fonts, or manually
change the fonts and font sizes of text
elements in the model so they are
consistent and portable.

3 Model Advisor Checks

3-140

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Allows exclusions of blocks and charts.

Action Results

Clicking Modify all Fonts changes the font and font size of all text elements in the
model according to the values you specify in the input parameters.

For the input parameters, if you specify Common, clicking Modify all Fonts changes the
font and font sizes of all text elements in the model to the most commonly used fonts, font
sizes, or font styles.

See Also

• MAAB guideline, Version 3.0: db_0043: Simulink font and font size in the Simulink
documentation.

• JMAAB guideline, Version 4.0: db_0043: Simulink font and font size.

 MathWorks Automotive Advisory Board Checks

3-141

Check Transition orientations in flow charts

Check ID: mathworks.maab.db_0132

Check transition orientations in flow charts.

Description

The following rules apply to transitions in flow charts:

• Draw transition conditions horizontally.
• Draw transitions with a condition action vertically.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model includes a transition with a
condition that is not drawn horizontally
or a transition action that is not drawn
vertically.

Modify the model.

Capabilities and Limitations

• MAAB guideline, Version 3.0 limitation: Although db_0132: Transitions in flow charts
has an exception for loop constructs, the check does flag flow charts containing loop
constructs if the transition violates the orientation rule.

• JMAAB guideline, Version 4.0 limitation: The check only flags flow charts containing
loop constructs if the transition violates the orientation rule.

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: db_0132: Transitions in flow charts in the Simulink
documentation.

3 Model Advisor Checks

3-142

• JMAAB guideline, Version 4.0: db_0132: Transitions in Flow Charts.

 MathWorks Automotive Advisory Board Checks

3-143

Check for nondefault block attributes

Check ID: mathworks.maab.db_0140

Identify blocks that use nondefault block parameter values that are not displayed in the
model diagram.

Description

Model diagrams should display block parameters that have values other than default
values. One way of displaying this information is by using the Block Annotation tab in
the Block Properties dialog box.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Block parameters that have values other
than default values, and the values are not
in the model display.

In the Block Properties dialog, use the
Block Annotation tab to add block
parameter annotations.

Capabilities and Limitations

• JMAAB guideline, Version 4.0 limitation: The check flags masked blocks that display
parameter information but do not use block annotations. JMAAB 4.0 guidelines allow
masked blocks to display parameter information.

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Allows exclusions of blocks and charts.

Tip

If you use the add_block function with 'built-in/blocktype' as a source block
path name for Simulink built-in blocks, some default parameter values of some blocks
are different from the defaults that you get if you added those blocks interactively using
Simulink.

3 Model Advisor Checks

3-144

See Also

• MAAB guideline, Version 3.0: db_0140: Display of basic block parameters in the
Simulink documentation.

• JMAAB guideline, Version 4.0: db_0140: Display of block parameters.
• For a list of block parameter default values, see “Block-Specific Parameters” in the

Simulink documentation.
• add_block in the Simulink documentation.

 MathWorks Automotive Advisory Board Checks

3-145

Check signal line labels

Check ID: mathworks.maab.na_0008

Check the labeling on signal lines.

Description

Use a label to identify:

• Signals originating from the following blocks (the block icon exception noted below
applies to all blocks listed, except Inport, Bus Selector, Demux, and Selector):

Bus Selector block (tool forces labeling)
Chart block (Stateflow)
Constant block
Data Store Read block
Demux block
From block
Inport block
Selector block
Subsystem block

Block Icon Exception If a signal label is visible in the display of the icon for the
originating block, you do not have to display a label for the connected signal unless
the signal label is required elsewhere due to a rule for signal destinations.

• Signals connected to one of the following destination blocks (directly or indirectly with
a basic block that performs an operation that is not transformative):

Bus Creator block
Chart block (Stateflow)
Data Store Write block
Goto block
Mux block
Outport block
Subsystem block

• Any signal of interest.

Available with Simulink Verification and Validation.

3 Model Advisor Checks

3-146

Results and Recommended Actions

Condition Recommended Action

Signals coming from Bus Selector,
Chart, Constant, Data Store Read,
Demux, From, Inport, or Selector blocks
are not labeled.

Double-click the line that represents the
signal. After the text cursor appears, enter
a name and click anywhere outside the
label to exit label editing mode.

Capabilities and Limitations

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Does not allow exclusions of blocks or charts.

See Also

• MAAB guideline, Version 3.0: na_0008: Display of labels on signals in the Simulink
documentation.

• JMAAB guideline, Version 4.0: na_0008: Display of labels on signals.
• “Signal Names and Labels” in the Simulink documentation.

 MathWorks Automotive Advisory Board Checks

3-147

Check for propagated signal labels

Check ID: mathworks.maab.na_0009

Check for propagated labels on signal lines.

Description

You should propagate a signal label from its source rather than enter the signal label
explicitly (manually) if the signal originates from:

• An Inport block in a nested subsystem. However, if the nested subsystem is a
library subsystem, you can explicitly label the signal coming from the Inport block to
accommodate reuse of the library block.

• A basic block that performs a nontransformative operation.
• A Subsystem or Stateflow Chart block. However, if the connection originates from

the output of an instance of the library block, you can explicitly label the signal to
accommodate reuse of the library block.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model includes signal labels that
were entered explicitly, but should be
propagated.

Use the open angle bracket (<) character
to mark signal labels that should be
propagated and remove the labels that
were entered explicitly.

Capabilities and Limitations

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Does not allow exclusions of blocks or charts.

See Also

• MAAB guideline, Version 3.0: na_0009: Entry versus propagation of signal labels in
the Simulink documentation.

3 Model Advisor Checks

3-148

• JMAAB guideline, Version 4.0: na_0009: Entry versus propagation of signal labels.
• “Signal Names and Labels” in the Simulink documentation.

 MathWorks Automotive Advisory Board Checks

3-149

Check default transition placement in Stateflow charts

Check ID: mathworks.maab.jc_0531

Check default transition placement in Stateflow charts.

Description

In a Stateflow chart, you should connect the default transition at the top of the state and
place the destination state of the default transition above other states in the hierarchy.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The default transition for a Stateflow chart
is not connected at the top of the state.

Move the default transition to the top of the
Stateflow chart.

The destination state of a Stateflow chart
default transition is lower than other states
in the same hierarchy.

Adjust the position of the default transition
destination state so that the state is above
other states in the same hierarchy.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: jc_0531: Placement of the default transition in the
Simulink documentation.

• JMAAB guideline, Version 4.0: jc_0531: Placement of the default transition.
• “Syntax for States and Transitions”

3 Model Advisor Checks

3-150

Check return value assignments of graphical functions in Stateflow charts

Check ID: mathworks.maab.jc_0511

Identify graphical functions with multiple assignments of return values in Stateflow
charts.

Description

The return value from a Stateflow graphical function must be set in only one place.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The return value from a Stateflow
graphical function is assigned in multiple
places.

Modify the specified graphical function so
that its return value is set in one place.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: jc_0511: Setting the return value from a graphical
function in the Simulink documentation.

• JMAAB guideline, Version 4.0: jc_0511: Setting the return value from a graphical
function.

• “When to Use Reusable Functions in Charts” in the Stateflow documentation.

 MathWorks Automotive Advisory Board Checks

3-151

Check entry formatting in State blocks in Stateflow charts

Check ID: mathworks.maab.jc_0501

Identify missing line breaks between entry action (en), during action (du), and exit action
(ex) entries in states. Identify missing line breaks after semicolons (;) in statements.

Description

Start a new line after the entry, during, and exit entries, and after the completion of
a statement “;”.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

An entry (en) is not on a new line. Add a new line after the entry.
A during (du) is not on a new line. Add a new line after the during.
An exit (ex) is not on a new line. Add a new line after the exit.
Multiple statements found on one line. Add a new line after each statement.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

MAAB guideline, Version 3.0: jc_0501: Format of entries in a State block in the Simulink
documentation.

3 Model Advisor Checks

3-152

Check usage of return values from a graphical function in Stateflow
charts

Check ID: mathworks.maab.jc_0521

Identify calls to graphical functions in conditional expressions.

Description

Do not use the return value of a graphical function in a comparison operation.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Conditional expressions contain calls to
graphical functions.

Assign return values of graphical functions
to intermediate variables. Use these
intermediate variables in the specified
conditional expressions.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: jc_0521: Use of the return value from graphical
functions in the Simulink documentation.

• JMAAB guideline, Version 4.0: jc_0521: Use of the return value from graphical
functions.

• “When to Use Reusable Functions in Charts” in the Stateflow documentation.
• “Reuse Logic Patterns Using Graphical Functions” in the Stateflow documentation.

 MathWorks Automotive Advisory Board Checks

3-153

Check for pointers in Stateflow charts

Check ID: mathworks.maab.jm_0011

Identify pointer operations on custom code variables.

Description

Pointers to custom code variables are not allowed.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Custom code variables use pointer
operations.

Modify the specified chart to remove the
dependency on pointer operations.

Capabilities and Limitations

• Applies only to Stateflow charts that use C as the action language.
• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: jm_0011: Pointers in Stateflow in the Simulink
documentation.

• JMAAB guideline, Version 4.0: jm_0011: Pointers in Stateflow.

3 Model Advisor Checks

3-154

Check for event broadcasts in Stateflow charts

Check ID: mathworks.maab.jm_0012

Identify undirected event broadcasts that might cause recursion during simulation and
generate inefficient code.

Description

Event broadcasts in Stateflow charts must be directed.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Event broadcasts are undirected. Rearchitect the diagram to use directed
event broadcasting. Use the send syntax or
qualified event names to direct the event
to a particular state. Use multiple send
statements to direct an event to more than
one state.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: jm_0012: Event broadcasts in the Simulink
documentation.

• JMAAB guideline, Version 4.0: jm_0012: Event broadcasts.
• “Broadcast Events to Synchronize States” in the Stateflow documentation.

 MathWorks Automotive Advisory Board Checks

3-155

Check transition actions in Stateflow charts

Check ID: mathworks.maab.db_0151

Identify missing line breaks between transition actions.

Description

For readability, start each transition action on a new line.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Multiple transition actions are on a single
line.

Verify that each transition action begins on
a new line.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: db_0151: State machine patterns for transition actions
in the Simulink documentation.

• JMAAB guideline, Version 4.0: db_0151: State machine patterns for transition
actions.

• “Syntax for States and Transitions”

3 Model Advisor Checks

3-156

Check for MATLAB expressions in Stateflow charts

Check ID: mathworks.maab.db_0127

Identify Stateflow objects that use MATLAB expressions that are not suitable for code
generation.

Description

Do not use MATLAB functions, instructions, and operators in Stateflow objects.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Stateflow objects use MATLAB
expressions.

Replace MATLAB expressions in Stateflow
objects.

Capabilities and Limitations

• Applies only to Stateflow charts that use C as the action language.
• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: db_0127: MATLAB commands in Stateflow in the
Simulink documentation.

• JMAAB guideline, Version 4.0: db_0127: MATLAB commands in Stateflow.
• “Access Built-In MATLAB Functions and Workspace Data” in the Stateflow

documentation.

 MathWorks Automotive Advisory Board Checks

3-157

Check for indexing in blocks

Check ID: mathworks.maab.db_0112

Check that blocks use consistent vector indexing.

Description

Check that blocks use consistent vector indexing. When possible, use zero-based indexing
to improve code efficiency.

Available with Simulink Verification and Validation.

The check verifies consistent indexing for the following objects:

Object Indexing

• Assignment block
• For Iterator block
• Find block
• Multiport Switch block
• Selector block

• Zero-based indexing ([0, 1, 2, ...])
• One-based indexing ([1, 2, 3,...])

• Stateflow charts with C
action language

Zero-based indexing ([0, 1, 2, ...])

• MATLAB Function block
• Fcn block
• MATLAB System blocks
• Truth tables
• State transition tables
• Stateflow charts with

MATLAB action language
• MATLAB functions inside

Stateflow charts

One-based indexing ([1, 2, 3,...])

3 Model Advisor Checks

3-158

Results and Recommended Actions

Condition Recommended Action

Objects in your model use
one-based indexing, but can
be configured for zero-based
indexing.

Configure objects for zero-based indexing.

Objects in your model use
inconsistent indexing.

If possible, configure objects for zero-based indexing. If
your model contains objects that cannot be configured
for zero-based indexing, configure objects for one-based
indexing.

Capabilities and Limitations

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: db_0112: Indexing in the Simulink documentation.
• JMAAB guideline, Version 4.0: db_0112: Indexing.

 MathWorks Automotive Advisory Board Checks

3-159

Check file names

Check ID: mathworks.maab.ar_0001

Checks the names of all files residing in the same folder as the model

Description

A file name conforms to constraints.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The file name contains illegal characters. Rename the file. Allowed characters are a–
z, A–Z, 0–9. and underscore (_).

The file name starts with a number. Rename the file.
The file name starts with an underscore
("_").

Rename the file.

The file name ends with an underscore
("_").

Rename the file.

The file extension contains one (or more)
underscores.

Change the file extension.

The file name has consecutive underscores. Rename the file.
The file name contains more than one dot
(".").

Rename the file.

Capabilities and Limitations

• MAAB guideline, Version 3.0 limitation: The check does not flag conflicts with C++
keywords.

• Runs on library models.
• Does not allow exclusions of blocks or charts.

See Also

• MAAB guideline, Version 3.0: ar_0001: Filenames in the Simulink documentation.

3 Model Advisor Checks

3-160

• JMAAB guideline, Version 4.0: ar_0001: Usable characters for filenames.

 MathWorks Automotive Advisory Board Checks

3-161

Check folder names

Check ID: mathworks.maab.ar_0002

Checks model directory and subdirectory names for invalid characters.

Description

A directory name conforms to constraints.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The directory name contains illegal
characters.

Rename the directory. Allowed characters
are a–z, A–Z, 0–9. and underscore (_).

The directory name starts with a number. Rename the directory.
The directory name starts with an
underscore ("_").

Rename the directory.

The directory name ends with an
underscore ("_").

Rename the directory.

The directory name has consecutive
underscores.

Rename the directory.

Capabilities and Limitations

• Runs on library models.
• Does not allow exclusions of blocks or charts.

See Also

• MAAB guideline, Version 3.0: ar_0002: Directory names in the Simulink
documentation.

• JMAAB guideline, Version 4.0: ar_0002: Usable characters for folder names.

3 Model Advisor Checks

3-162

Check for prohibited blocks in discrete controllers

Check ID: mathworks.maab.jm_0001

Check for prohibited blocks in discrete controllers.

Description

The check identifies continuous blocks in discrete controller models.

Available with Simulink Verification and Validation.

Input Parameters

To change the list of blocks that the check flags, you can use the Model Advisor
Configuration Editor.

1 Open the Model Configuration Editor and navigate to Check for prohibited
blocks in discrete controllers.

2 In the Input Parameters pane, to:

• Prohibit the blocks as specified in MAAB 3.0, from Standard, select MAAB 3.0.
The Block type list table provides the blocks that MAAB 3.0 prohibits inside
controllers.

• To specify blocks to either allow or prohibit, from Standard, select Custom. In
Treat blocktype list as, select Allowed or Prohibited. In the Block type list
table, you can add or remove blocks.

3 Click Apply.
4 Save the configuration. When you run the check using this configuration, the check

uses the specified input parameters.

Results and Recommended Actions

Condition Recommended Action

Continuous blocks — Derivative,
Integrator, State-Space, Transfer
Fcn, Transfer Delay, Variable Time
Delay, Variable Transport Delay,
and Zero-Pole — are not permitted in
models representing discrete controllers.

Replace continuous blocks with the
equivalent blocks discretized in the s-
domain. Use the Discretizing library,
as described in “Discretize Blocks from
the Simulink Model” in the Simulink
documentation.

 MathWorks Automotive Advisory Board Checks

3-163

Capabilities and Limitations

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: jm_0001: Prohibited Simulink standard blocks inside
controllers in the Simulink documentation.

• JMAAB guideline, Version 4.0: jm_0001: Prohibited Simulink standard blocks inside
controllers.

• “Overview of the Model Advisor Configuration Editor”

3 Model Advisor Checks

3-164

Check for prohibited sink blocks

Check ID: mathworks.maab.hd_0001

Check for prohibited Simulink sink blocks.

Description

You must design controller models from discrete blocks. Sink blocks, such as the Scope
block, are not allowed in controller models.

Available with Simulink Verification and Validation.

Input Parameters

To change the list of blocks that the check flags, you can use the Model Advisor
Configuration Editor.

1 Open the Model Configuration Editor and navigate to Check for prohibited sink
blocks.

2 In the Input Parameters pane, to:

• Prohibit the blocks as specified by MAAB 3.0, from Standard, select MAAB 3.0.
The Block type list table provides the sink blocks that MAAB 3.0 prohibits.

• To specify blocks to either allow or prohibit, from Standard, select Custom. In
Treat blocktype list as, select Allowed or Prohibited. In the Block type list
table, you can add or remove blocks.

3 Click Apply.
4 Save the configuration. When you run the check using this configuration, the check

uses the specified input parameters.

Results and Recommended Actions

Condition Recommended Action

Sink blocks are not permitted in discrete
controllers.

Remove sink blocks from the model.

Capabilities and Limitations

• Runs on library models.

 MathWorks Automotive Advisory Board Checks

3-165

• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: hd_0001: Prohibited Simulink sinks in the Simulink
documentation.

• JMAAB guideline, Version 4.0: hd_0001: Prohibited Simulink sinks.
• “Overview of the Model Advisor Configuration Editor”

3 Model Advisor Checks

3-166

Check positioning and configuration of ports

Check ID: mathworks.maab.db_0042

Check whether the model contains ports with invalid position and configuration.

Description

In models, ports must comply with the following rules:

• Place Inport blocks on the left side of the diagram. Move the Inport block right only
to prevent signal crossings.

• Place Outport blocks on the right side of the diagram. Move the Outport block left
only to prevent signal crossings.

• Avoid using duplicate Inport blocks at the subsystem level if possible.
• Do not use duplicate Inport blocks at the root level.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Inport blocks are too far to the right and
result in left-flowing signals.

Move the specified Inport blocks to the
left.

Outport blocks are too far to the left and
result in right-flowing signals.

Move the specified Output blocks to the
right.

Ports do not have the default orientation. Modify the model diagram such that signal
lines for output ports enter the side of the
block and signal lines for input ports exit
the right side of the block.

Ports are duplicate Inport blocks. • If the duplicate Inport blocks are
in a subsystem, remove them where
possible.

• If the duplicate Inport blocks are at
the root level, remove them.

Capabilities and Limitations

• Runs on library models.

 MathWorks Automotive Advisory Board Checks

3-167

• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: db_0042: Port block in Simulink models in the Simulink
documentation.

• JMAAB guideline, Version 4.0: db_0042: Port block in Simulink models.

3 Model Advisor Checks

3-168

Check for matching port and signal names

Check ID: mathworks.maab.jm_0010

Check for mismatches between names of ports and corresponding signals.

Description

Use matching names for ports and their corresponding signals.

Available with Simulink Verification and Validation.

Prerequisite

Prerequisite MAAB guidelines, Version 3.0, for this check are:

• db_0042: Port block in Simulink models
• na_0005: Port block name visibility in Simulink models

Results and Recommended Actions

Condition Recommended Action

Ports have names that differ from their
corresponding signals.

Change the port name or the signal name
to match the name for the signal.

Capabilities and Limitations

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: jm_0010: Port block names in Simulink models in the
Simulink documentation.

 MathWorks Automotive Advisory Board Checks

3-169

Check whether block names appear below blocks

Check ID: mathworks.maab.db_0142

Check whether block names appear below blocks.

Description

If shown, the name of the block should appear below the block.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Blocks have names that do not appear
below the blocks.

Set the name of the block to appear below
the blocks.

Capabilities and Limitations

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: db_0142: Position of block names in the Simulink
documentation.

• JMAAB guideline, Version 4.0: db_0142: Position of block names.

3 Model Advisor Checks

3-170

Check for mixing basic blocks and subsystems

Check ID: mathworks.maab.db_0143

Check for systems that mix primitive blocks and subsystems.

Description

You must design each level of a model with building blocks of the same type, for example,
only subsystems or only primitive (basic) blocks. If you mask your subsystem and set
MaskType to a nonempty string, the Model Advisor treats the subsystem as a basic block.

Available with Simulink Verification and Validation.

Input Parameters

To change the list of blocks that the check flags, you can use the Model Advisor
Configuration Editor.

1 Open the Model Configuration Editor and navigate to Check for mixing basic
blocks and subsystems.

2 In the Input Parameters pane, to:

• Allow the blocks specified by MAAB 3.0, from Standard, select MAAB 3.0. The
Block type list table provides the blocks that MAAB 3.0 allows at any model
level.

• To specify blocks to either allow or prohibit, from Standard, select Custom. In
Treat blocktype list as, select Allowed or Prohibited. In the Block type list
table, you can add or remove blocks.

3 Click Apply.
4 Save the configuration. When you run the check using this configuration, the check

uses the specified input parameters.

Results and Recommended Actions

Condition Recommended Action

A level in the model includes subsystem
blocks and primitive blocks.

Move nonvirtual blocks into the subsystem.

 MathWorks Automotive Advisory Board Checks

3-171

Capabilities and Limitations

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: db_0143: Similar block types on the model levels in the
Simulink documentation.

• JMAAB guideline, Version 4.0: db_0143: Similar block types on the model levels.
• “Overview of the Model Advisor Configuration Editor”

3 Model Advisor Checks

3-172

Check for unconnected ports and signal lines

Check ID: mathworks.maab.db_0081

Check whether model has unconnected input ports, output ports, or signal lines.

Description

Unconnected inputs should be connected to ground blocks. Unconnected outputs should
be connected to terminator blocks.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Blocks have unconnected inputs or outputs. Connect unconnected lines to blocks
specified by the design or to Ground or
Terminator blocks.

Capabilities and Limitations

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: db_0081: Unconnected signals, block inputs and block
outputs in the Simulink documentation.

• JMAAB guideline, Version 4.0: db_0081: Unconnected signals, block inputs and block
outputs.

 MathWorks Automotive Advisory Board Checks

3-173

Check position of Trigger and Enable blocks

Check ID: mathworks.maab.db_0146

Check the position of Trigger and Enable blocks.

Description

Locate blocks that define subsystems as conditional or iterative at the top of the
subsystem diagram.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Trigger, Enable, and Action Port
blocks are not centered in the upper third
of the model diagram.

Move the Trigger, Enable, and Action
Port blocks to the upper third of the model
diagram.

Capabilities and Limitations

• JMAAB guideline, Version 4.0 limitation: The check does not verify that For Each or
For Iterator blocks are uniformly located.

• Runs on library models.
• Analyzes content of library linked blocks.
• Does not analyze content in masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: db_0146: Triggered, enabled, conditional Subsystems in
the Simulink documentation.

• JMAAB guideline, Version 4.0: db_0146: Triggered, enabled, conditional Subsystems.

3 Model Advisor Checks

3-174

Check usage of tunable parameters in blocks

Check ID: mathworks.maab.db_0110

Check whether tunable parameters specify expressions, data type conversions, or
indexing operations.

Description

To make a parameter tunable, you must enter the basic block without the use of
MATLAB calculations or scripting. For example, omit:

• Expressions
• Data type conversions
• Selections of rows or columns

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Blocks have a tunable parameter that
specifies an expression, data type
conversion, or indexing operation.

In each case, move the calculation outside
of the block, for example, by performing
the calculation with a series of Simulink
blocks, or precompute the value as a new
variable.

Capabilities and Limitations

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: db_0110: Tunable parameters in basic blocks in the
Simulink documentation.

• JMAAB guideline, Version 4.0: db_0110: Tunable parameters in basic blocks.

 MathWorks Automotive Advisory Board Checks

3-175

Check Stateflow data objects with local scope

Check ID: mathworks.maab.db_0125

Check whether Stateflow data objects with local scope are defined at the chart level or
below.

Description

You must define local data of a Stateflow block on the chart level or below in the object
hierarchy. You cannot define local variables on the machine level; however, parameters
and constants are allowed at the machine level.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Local data is not defined in the Stateflow
hierarchy at the chart level or below.

Define local data at the chart level or
below.

Capabilities and Limitations

• JMAAB guideline, Version 4.0 limitation: The check does not detect if local data has
the same name within charts or states that have parent-child relationships.

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Does not allow exclusions of blocks or charts.

See Also

• MAAB guideline, Version 3.0: db_0125: Scope of internal signals and local auxiliary
variables in the Simulink documentation.

• JMAAB guideline, Version 4.0: db_0125: Scope of internal signals and local auxiliary
variables.

3 Model Advisor Checks

3-176

Check for Strong Data Typing with Simulink I/O

Check ID: mathworks.maab.db_0122

Check whether labeled Stateflow and Simulink input and output signals are strongly
typed.

Description

Strong data typing between Stateflow and Simulink input and output signals is required.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

A Stateflow chart does not use strong data
typing with Simulink.

Select the Use Strong Data Typing with
Simulink I/O check box for the specified
block.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: db_0122: Stateflow and Simulink interface signals and
parameters in the Simulink documentation.

• JMAAB guideline, Version 4.0: db_0122: Stateflow and Simulink interface signals and
parameters.

• “Syntax for States and Transitions”

 MathWorks Automotive Advisory Board Checks

3-177

Check usage of exclusive and default states in state machines

Check ID: mathworks.maab.db_0137

Check states in state machines.

Description

In state machines:

• There must be at least two exclusive states.
• A state cannot have only one substate.
• The initial state of a hierarchical level with exclusive states is clearly defined by a

default transition.

Available with Simulink Verification and Validation.

Prerequisite

A prerequisite MAAB guideline, Version 3.0, for this check is db_0149: Flow chart
patterns for condition actions.

Results and Recommended Actions

Condition Recommended Action

A system is underspecified. Validate that the intended design is
represented in the Stateflow diagram.

Chart has only one exclusive (OR) state. Make the state a parallel state, or add
another exclusive (OR) state.

Chart does not have a default state defined. Define a default state.
Chart has multiple default states defined. Define only one default state. Make the

others nondefault.
State has only one exclusive (OR) substate. Make the state a parallel state, or add

another exclusive (OR) state.
State does not have a default substate
defined.

Define a default substate.

State has multiple default substates
defined.

Define only one default substate, make the
others nondefault.

3 Model Advisor Checks

3-178

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

MAAB guideline, Version 3.0: db_0137: States in state machines in the Simulink
documentation.

 MathWorks Automotive Advisory Board Checks

3-179

Check Implement logic signals as Boolean data (vs. double)

Check ID: mathworks.maab.jc_0011

Check the optimization parameter for Boolean data types.

Description

Optimization for Boolean data types is required

Available with Simulink Verification and Validation.

Prerequisite

A prerequisite MAAB guideline, Version 3.0, for this check is na_0002: Appropriate
implementation of fundamental logical and numerical operations.

Results and Recommended Actions

Condition Recommended Action

Configuration setting for Implement logic
signals as boolean data (vs. double) is
not set.

Select the Implement logic signals as
boolean data (vs. double) check box in
the Configuration Parameters dialog box
All Parameters pane.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• MAAB guideline, Version 3.0: jc_0011: Optimization parameters for Boolean data
types in the Simulink documentation.

• JMAAB guideline, Version 4.0: jc_0011: Optimization parameters for Boolean data
types.

3 Model Advisor Checks

3-180

Check model diagnostic parameters

Check ID: mathworks.maab.jc_0021

Check the model diagnostics configuration parameter settings.

Description

You should enable the following diagnostics:
Algebraic loop
Minimize algebraic loop
Inf or NaN block output
Duplicate data store names
Unconnected block input ports
Unconnected block output ports
Unconnected line
Unspecified bus object at root Outport block
Mux blocks used to create bus signals
Element name mismatch
Invalid function-call connection

Diagnostics not listed in the Results and Recommended Actions section below can be set
to any value.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Algebraic loop is set to none. Set Algebraic loop on the Diagnostics >
Solver pane in the Configuration Parameters
dialog box to error or warning. Otherwise,
Simulink might attempt to automatically
break the algebraic loops, which can impact the
execution order of the blocks.

Minimize algebraic loop is set to none. Set Minimize algebraic loop on the
Diagnostics > Solver pane in the
Configuration Parameters dialog box to error
or warning. Otherwise, Simulink might attempt
to automatically break the algebraic loops for
reference models and atomic subsystems, which

 MathWorks Automotive Advisory Board Checks

3-181

Condition Recommended Action

can impact the execution order for those models
or subsystems.

Inf or NaN block output is set to none,
which can result in numerical exceptions in the
generated code.

Set Inf or NaN block output on the
Diagnostics > Data Validity > Signals pane
in the Configuration Parameters dialog box to
error or warning.

Duplicate data store names is set to none,
which can result in nonunique variable naming
in the generated code.

Set Duplicate data store names on the
Diagnostics > Data Validity > Signals pane
in the Configuration Parameters dialog box to
error or warning.

Unconnected block input ports is set to
none, which prevents code generation.

Set Unconnected block input ports on the
Diagnostics > Data Validity > Signals pane
in the Configuration Parameters dialog box to
error or warning.

Unconnected block output ports is set to
none, which can lead to dead code.

Set Unconnected block output ports on the
Diagnostics > Data Validity > Signals pane
in the Configuration Parameters dialog box to
error or warning.

Unconnected line is set to none, which
prevents code generation.

Set Unconnected line on the Diagnostics
> Connectivity > Signals pane in the
Configuration Parameters dialog box to error
or warning.

Unspecified bus object at root Outport
block is set to none, which can lead to an
unspecified interface if the model is referenced
from another model.

Set Unspecified bus object at root Outport
block on the Diagnostics > Connectivity >
Buses pane in the Configuration Parameters
dialog box to error or warning.

Mux blocks used to create bus signals
is set to none, which can lead to creating an
unintended bus in the model.

Set Mux blocks used to create bus signals
on the Diagnostics > Connectivity > Buses
pane in the Configuration Parameters dialog box
to error or warning.

Element name mismatch is set to none,
which can lead to an unintended interface in the
generated code.

Set Element name mismatch on the
Diagnostics > Connectivity > Buses pane
in the Configuration Parameters dialog box to
error or warning.

3 Model Advisor Checks

3-182

Condition Recommended Action

Invalid function-call connection is set
to none, which can lead to an error in the
operation of the generated code.

Set Invalid function-call connection on the
Diagnostics > Connectivity > Function
Calls pane in the Configuration Parameters
dialog box to error or warning. This condition
can lead to an error in the operation of the
generated code.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• MAAB guideline, Version 3.0: jc_0021: Model diagnostic settings in the Simulink
documentation.

 MathWorks Automotive Advisory Board Checks

3-183

Check the display attributes of block names

Check ID: mathworks.maab.jc_0061

Check the display attributes of subsystem and block names.

Description

When the subsystem and block names provide descriptive information, display the
names. If the block function is known from its appearance, do not display the name.
Blocks with names that are obvious from the block appearance:

• From
• Goto
• Ground
• Logic
• MinMax
• ModelReference
• MultiPortSwitch
• Product
• Relational Operator
• Saturate
• Switch
• Terminator
• Trigonometry
• Unit Delay
• Sum
• Compare To Constant
• Compare To Zero

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Name is displayed and obvious from the
block appearance.

Hide name by clearing Diagram > Format
> Show Block Name.

3 Model Advisor Checks

3-184

Condition Recommended Action

Name is not descriptive. Specifically, the
block name is:

• Not obvious from the block appearance.
• The default name appended with an

integer.

Modify the name to be more descriptive
or hide the name by clearing Diagram >
Format > Show Block Name.

Name is descriptive and not displayed.
Descriptive names are:

• Provided for blocks that are not obvious
from the block appearance.

• Not a default name appended with an
integer.

Display the name by selecting Diagram >
Format > Show Block Name

Capabilities and Limitations

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: jc_0061: Display of block names in the Simulink
documentation.

• JMAAB guideline, Version 4.0: jc_0061: Display of block names.

 MathWorks Automotive Advisory Board Checks

3-185

Check display for port blocks

Check ID: mathworks.maab.jc_0081

Check the Icon display setting for Inport and Outport blocks.

Description

The Icon display setting is required.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The Icon display setting is not set. Set the Icon display to Port number for
the specified Inport and Outport blocks.

Capabilities and Limitations

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Allows exclusions of blocks and charts.

See Also

MAAB guideline, Version 3.0: jc_0081: Icon display for Port block in the Simulink
documentation.

3 Model Advisor Checks

3-186

Check subsystem names

Check ID: mathworks.maab.jc_0201

Check whether subsystem block names include invalid characters.

Description

The names of all subsystem blocks that generate code are checked for invalid characters.

The check does not report invalid characters in subsystem names for:

• Virtual subsystems
• Atomic subsystems with Function Packaging set to Inline

Available with Simulink Verification and Validation.

Input Parameters

To control the naming convention for blocks that the check flags, you can use the Model
Advisor Configuration Editor.

1 Open the Model Configuration Editor and navigate to Check port block names. In
the Input Parameter pane:

• Use Naming standard to select MAAB 3.0 or Custom. When you select MAAB
3.0, the check uses the regular expression ([^a-zA-Z_0-9])|(^\d)|(^)|
(__)|(^_)|(_$) to verify that names:

• Use these characters: a-z, A-Z, 0-9, and the underscore (_).
• Do not start with a number.
• Do not use underscores at the beginning or end of a string.
• Do not use more than one consecutive underscore.

When you select Custom, you can enter your own Regular expression for
prohibited names. For example, if you want to allow more than one consecutive
underscore, enter ([^a-zA-Z_0-9])|(^\d)|(^)|(^_)|(_$).

2 Click Apply.
3 Save the configuration. When you run the check using this configuration, the check

uses the input parameters that you specified.

 MathWorks Automotive Advisory Board Checks

3-187

Results and Recommended Actions

Condition Recommended Action

The subsystem names do not comply with
the naming standard specified in the input
parameters.

Update the subsystem names to comply
with your own guidelines or the MAAB
guidelines.

Capabilities and Limitations

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Allows exclusions of blocks and charts.

Tips

Use underscores to separate parts of a subsystem name instead of spaces.

See Also

• MAAB guideline, Version 3.0: jc_0201: Usable characters for Subsystem names in the
Simulink documentation.

• JMAAB guideline, Version 4.0: jc_0201: Usable characters for Subsystem names.

3 Model Advisor Checks

3-188

Check port block names

Check ID: mathworks.maab.jc_0211

Check whether Inport and Outport block names include invalid characters.

Description

The names of all Inport and Outport blocks are checked for invalid characters.

Available with Simulink Verification and Validation.

Input Parameters

To control the naming convention for blocks that the check flags, you can use the Model
Advisor Configuration Editor.

1 Open the Model Configuration Editor and navigate to Check port block names. In
the Input Parameter pane:

• Use Naming standard to select MAAB 3.0 or Custom. When you select MAAB
3.0, the check uses the regular expression ([^a-zA-Z_0-9])|(^\d)|(^)|
(__)|(^_)|(_$) to verify that names:

• Use these characters: a-z, A-Z, 0-9, and the underscore (_).
• Do not start with a number.
• Do not use underscores at the beginning or end of a string.
• Do not use more than one consecutive underscore.

When you select Custom, you can enter your own Regular expression for
prohibited names. For example, if you want to allow more than one consecutive
underscore, enter ([^a-zA-Z_0-9])|(^\d)|(^)|(^_)|(_$).

2 Click Apply.
3 Save the configuration. When you run the check using this configuration, the check

uses the input parameters that you specified.

 MathWorks Automotive Advisory Board Checks

3-189

Results and Recommended Actions

Condition Recommended Action

The block names do not comply with the
naming standard specified in the input
parameters.

Update the block names to comply
with your own guidelines or the MAAB
guidelines.

Capabilities and Limitations

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Allows exclusions of blocks and charts.

Tips

Use underscores to separate parts of a block name instead of spaces.

See Also

• MAAB guideline, Version 3.0: jc_0211: Usable characters for Inport blocks and
Outport blocks in the Simulink documentation.

• JMAAB guideline, Version 4.0: jc_0211: Usable characters for Inport block and
Outport block.

3 Model Advisor Checks

3-190

Check character usage in signal labels

Check ID: mathworks.maab.jc_0221

Check whether signal line names include invalid characters.

Description

The names of all signal lines are checked for invalid characters.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The signal line name contains illegal
characters.

Rename the signal line. Allowed characters
include a–z, A–Z, 0–9, underscore (_), and
period (.).

The signal line name starts with a number. Rename the signal line.
The signal line name starts with an
underscore ("_").

Rename the signal line.

The signal line name ends with an
underscore ("_").

Rename the signal line.

The signal line name has consecutive
underscores.

Rename the signal line.

The signal line name has blank spaces. Rename the signal line.
The signal line name has control
characters.

Rename the signal line.

Capabilities and Limitations

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Does not allow exclusions of blocks or charts.

Tips

Use underscores to separate parts of a signal line name instead of spaces.

 MathWorks Automotive Advisory Board Checks

3-191

See Also

• MAAB guideline, Version 3.0: jc_0221: Usable characters for signal line names in the
Simulink documentation.

• JMAAB guideline, Version 4.0: jc_0222: Usable characters for signal line and bus
names.

3 Model Advisor Checks

3-192

Check character usage in block names

Check ID: mathworks.maab.jc_0231

Check whether block names include invalid characters.

Description

The check reports invalid characters in all block names, except:

• Inports and Outports
• Unmasked subsystems

MAAB guideline, Version 3.0, jc_0231: Usable characters for block names does not apply
to subsystem blocks.

Available with Simulink Verification and Validation.

Prerequisite

A prerequisite MAAB guideline, Version 3.0, for this check is jc_0201: Usable characters
for Subsystem names.

Input Parameters

To control the naming convention for blocks that the check flags, you can use the Model
Advisor Configuration Editor.

1 Open the Model Configuration Editor and navigate to Check character usage in
block names. In the Input Parameter pane:

• Use Naming standard to select MAAB 3.0 or Custom. When you select MAAB
3.0, the check uses the regular expression ([^a-zA-Z_0-9\n\r])|(^\d)|
(^) to verify that names:

• Use these characters: a-z, A-Z, 0-9, underscore (_), and blank space.
• Do not start with a number or blank space.
• Do not have double byte characters.

When you select Custom, you can enter your own Regular expression for
prohibited names. For example, if you do not want to allow underscores (_) in a
block name, enter ([^a-zA-Z0-9\r])|(^\d)|(^).

 MathWorks Automotive Advisory Board Checks

3-193

2 Click Apply.
3 Save the configuration. When you run the check using this configuration, the check

uses the input parameters that you specified.

Results and Recommended Actions

Condition Recommended Action

The block names do not comply with the
naming standard specified in the input
parameters.

Update the block names to comply
with your own guidelines or the MAAB
guidelines.

Capabilities and Limitations

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Allows exclusions of blocks and charts.

Tips

Carriage returns are allowed in block names.

See Also

• MAAB guideline, Version 3.0: jc_0231: Usable characters for block names in the
Simulink documentation.

• JMAAB guideline, Version 4.0: jc_0231: Usable characters for block names.

3 Model Advisor Checks

3-194

Check Trigger and Enable block names

Check ID: mathworks.maab.jc_0281

Check Trigger and Enable block port names.

Description

Block port names should match the name of the signal triggering the subsystem.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Trigger block does not match the name of
the signal to which it is connected.

Match Trigger block names to the
connecting signal.

Enable block does not match the name of
the signal to which it is connected.

Match Enable block names to the
connecting signal.

Capabilities and Limitations

• JMAAB guideline, Version 4.0 limitation: This check only flags Trigger and Enable
blocks names.

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: jc_0281: Naming of Trigger Port block and Enable Port
block in the Simulink documentation.

• JMAAB guideline, Version 4.0: jc_0281: Naming of Trigger Port block and Enable Port
block.

 MathWorks Automotive Advisory Board Checks

3-195

Check for Simulink diagrams using nonstandard display attributes

Check ID: mathworks.maab.na_0004

Check model appearance setting attributes.

Description

Model appearance settings are required to conform to the guidelines when the model is
released.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The toolbar is not visible. Select View > Toolbar.
Wide Nonscalar Lines is cleared. Select Display > Signals & Ports > Wide

Nonscalar Lines.
Viewer Indicators is cleared. Select Display > Signals & Ports >

Viewer Indicators.
Testpoint Indicators is cleared. Select Display > Signals & Ports >

Testpoint & Logging Indicators.
Port Data Types is selected. Clear Display > Signals & Ports > Port

Data Types.
Storage Class is selected. Clear Display > Signals & Ports >

Storage Class.
Signal Dimensions is selected. Clear Display > Signals & Ports >

Signal Dimensions.
Model Browser is selected. Clear View > Model Browser > Show

Model Browser.
Sorted Execution Order is selected. Clear Display > Blocks > Sorted

Execution Order.
Model Block Version is selected. Clear Display > Blocks > Block Version

for Referenced Models.
Model Block I/O Mismatch is selected. Clear Display > Blocks > Block I/O

Mismatch for Referenced Models.

3 Model Advisor Checks

3-196

Condition Recommended Action

Library Links is set to Disabled, User
Defined or All.

Select Display > Library Links > None.

Linearization Indicators is cleared. Select Display > Signals & Ports >
Linearization Indicators.

Block backgrounds are not white. Blocks should have black foregrounds
with white backgrounds. Click the
specified block and select Format >
Foreground Color > Black and Format
> Background Color > White.

Diagrams do not have white backgrounds. Select Diagram > Format > Canvas
Color > White.

Diagrams do not have zoom factor set to
100%.

Select View > Zoom > Normal (100%).

Action Results

Clicking Modify updates the display attributes to conform to the guideline.

Capabilities and Limitations

• Does not run on library models.
• Analyzes content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Does not allow exclusions of blocks or charts.

See Also

• MAAB guideline, Version 3.0: na_0004: Simulink model appearance in the Simulink
documentation.

• JMAAB guideline, Version 4.0: na_0004: Simulink model appearance.

 MathWorks Automotive Advisory Board Checks

3-197

Check MATLAB code for global variables

Check ID: mathworks.maab.na_0024

Check for global variables in MATLAB code.

Description

Verifies that global variables are not used in any of the following:

• MATLAB code in MATLAB Function blocks
• MATLAB functions defined in Stateflow charts
• Called MATLAB functions

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Global variables are used in one or more of
the following:

• MATLAB code in MATLAB Function
blocks

• MATLAB functions defined in Stateflow
charts

• Called MATLAB functions

Replace global variables with signal lines,
function arguments, or persistent data.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Does not allow exclusions of blocks or charts.

See Also

MAAB guideline, Version 3.0: na_0024: Global Variables in the Simulink documentation.

3 Model Advisor Checks

3-198

• MAAB guideline, Version 3.0: na_0024: Global Variables in the Simulink
documentation.

• JMAAB guideline, Version 4.0: na_0024: Global variable.

 MathWorks Automotive Advisory Board Checks

3-199

Check visibility of block port names

Check ID: mathworks.maab.na_0005

Check the visibility of port block names.

Description

An organization applying the MAAB guideline, Version 3.0, must select one of the
following alternatives to enforce:

• The names of port blocks are not hidden.
• The name of port blocks must be hidden.

Available with Simulink Verification and Validation.

Input Parameters

All Port names should be shown (Format/Show Name)
Select this check box if all ports should show the name, including subsystems.

Results and Recommended Actions

Condition Recommended Action

Blocks do not show their name and the All
Port names should be shown (Format/
Show Name) check box is selected.

Change the format of the specified blocks
to show names according to the input
requirement.

Blocks show their name and the All Port
names should be shown (Format/Show
Name) check box is cleared.

Change the format of the specified blocks
to hide names according to the input
requirement.

Subsystem blocks do not show their port
names.

Set the subsystem parameter Show port
labels to a value other than none.

Subsystem blocks show their port names. Set the subsystem parameter Show port
labels to none.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content in masked subsystems.

3 Model Advisor Checks

3-200

• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Allows exclusions of blocks and charts.

See Also

MAAB guideline, Version 3.0: na_0005: Port block name visibility in Simulink models in
the Simulink documentation.

 MathWorks Automotive Advisory Board Checks

3-201

Check orientation of Subsystem blocks

Check ID: mathworks.maab.jc_0111

Check the orientation of subsystem blocks.

Description

Subsystem inputs must be located on the left side of the block, and outputs must be
located on the right side of the block.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Subsystem blocks are not using the right
orientation

Rotate the subsystem so that inputs are on
the left side of block and outputs are on the
right side of the block.

Capabilities and Limitations

• JMAAB guideline, Version 4.0 limitation: The check does not flag the rotation of
subsystems.

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: jc_0111: Direction of Subsystem in the Simulink
documentation.

• JMAAB guideline, Version 4.0: jc_0111: Direction of Subsystem.

3 Model Advisor Checks

3-202

Check usage of Relational Operator blocks

Check ID: mathworks.maab.jc_0131

Check the position of Constant blocks used in Relational Operator blocks.

Description

When the relational operator is used to compare a signal to a constant value, the
constant input should be the second, lower input.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Relational Operator blocks have a
Constant block on the first, upper input.

Move the Constant block to the second,
lower input.

Capabilities and Limitations

• Runs on library models.
• Analyzes content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: jc_0131: Use of Relational Operator block in the
Simulink documentation.

• JMAAB guideline, Version 4.0: jc_0131: Use of Relational Operator block.

 MathWorks Automotive Advisory Board Checks

3-203

Check usage of Switch blocks

Check ID: mathworks.maab.jc_0141

Check usage of Switch blocks.

Description

Verifies that the Switch block control input (the second input) is a Boolean value and
that the block is configured to pass the first input when the control input is nonzero.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The Switch block control input (second
input) is not a Boolean value.

Change the data type of the control input to
Boolean.

The Switch block is not configured to pass
the first input when the control input is
nonzero.

Set the block parameter Criteria for
passing first input to u2 ~=0.

Capabilities and Limitations

• Does not run on library models.
• Analyzes content of library linked blocks.
• Analyzes content in masked subsystems that have no workspaces and no dialogs.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: jc_0141: Use of the Switch block in the Simulink
documentation.

• JMAAB guideline, Version 4.0: jc_0141: Use of the Switch block.
• Switch block

3 Model Advisor Checks

3-204

Check usage of buses and Mux blocks

Check ID: mathworks.maab.na_0010

Check usage of buses and Mux blocks.

Description

This check verifies the usage of buses and Mux blocks.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The individual scalar input signals
for a Mux block do not have common
functionality, data types, dimensions, and
units.

Modify the scalar input signals such that
the specifications match.

The output of a Mux block is not a vector. Change the output of the Mux block to a
vector.

All inputs to a Mux block are not scalars. Make sure that all input signals to Mux
blocks are scalars.

The input for a Bus Selector block is not
a bus signal.

Make sure that the input for all Bus
Selector blocks is a bus signal.

Capabilities and Limitations

• Does not run on library models.
• Does not allow exclusions of blocks or charts.

See Also

• MAAB guideline, Version 3.0: na_0010: Grouping data flows into signals in the
Simulink documentation.

• “Composite Signals”

 MathWorks Automotive Advisory Board Checks

3-205

Check for bitwise operations in Stateflow charts

Check ID: mathworks.maab.na_0001

Identify bitwise operators (&, |, and ^) in Stateflow charts. If you select Enable C-bit
operations for a chart, only bitwise operators in expressions containing Boolean data
types are reported. Otherwise, all bitwise operators are reported for the chart.

Description

Do not use bitwise operators in Stateflow charts, unless you enable bitwise operations.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Stateflow charts with Enable C-bit
operations selected use bitwise operators
(&, |, and ^) in expressions containing
Boolean data types.

Do not use Boolean data types in the
specified expressions.

The Model Advisor could not determine
the data types in expressions with bitwise
operations.

To allow Model Advisor to determine the
data types, consider explicitly typecasting
the specified expressions.

Stateflow charts with Enable C-bit
operations cleared use bitwise operators
(&, |, and ^).

To fix this issue, do either of the following:

• Modify the expressions to replace
bitwise operators.

• If not using Boolean data types,
consider enabling bitwise operations. In
the Chart properties dialog box, select
Enable C-bit operations.

Capabilities and Limitations

• Applies only to charts that use C as the action language.
• Does not run on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.

3 Model Advisor Checks

3-206

• Allows exclusions of blocks and charts.

See Also

• “Binary and Bitwise Operations” in the Stateflow documentation.
• MAAB guideline, Version 3.0: na_0001: Bitwise Stateflow operators in the Simulink

documentation.
• JMAAB guideline, Version 4.0: na_0001: Bitwise Stateflow operators.
• “hisf_0003: Usage of bitwise operations” in the Simulink documentation.

 MathWorks Automotive Advisory Board Checks

3-207

Check for comparison operations in Stateflow charts

Check ID: mathworks.maab.na_0013

Identify comparison operations with different data types in Stateflow objects.

Description

Comparisons should be made between variables of the same data types.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Comparison operations with different data
types were found.

Revisit the specified operations to avoid
comparison operations with different data
types.

The Model Advisor could not determine the
data types in expressions with comparison
operations.

To allow Model Advisor to determine the
data types, consider explicitly typecasting
the specified expressions.

Capabilities and Limitations

• Does not run on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: na_0013: Comparison operation in Stateflow in the
Simulink documentation.

• JMAAB guideline, Version 4.0: na_0013: Comparison operation in Stateflow.

3 Model Advisor Checks

3-208

Check for unary minus operations on unsigned integers in Stateflow
charts

Check ID: mathworks.maab.jc_0451

Identify unary minus operations applied to unsigned integers in Stateflow objects.

Description

Do not perform unary minus operations on unsigned integers in Stateflow objects.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Unary minus operations are applied to
unsigned integers in Stateflow objects.

Modify the specified objects to remove
dependency on unary minus operations.

The Model Advisor could not determine the
data types in expressions with unary minus
operations.

To allow Model Advisor to determine the
data types, consider explicitly typecasting
the specified expressions.

Capabilities and Limitations

• Does not run on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: jc_0451: Use of unary minus on unsigned integers in
Stateflow in the Simulink documentation.

• JMAAB guideline, Version 4.0: jc_0451: Use of unary minus on unsigned integers in
Stateflow.

 MathWorks Automotive Advisory Board Checks

3-209

Check for equality operations between floating-point expressions in
Stateflow charts

Check ID: mathworks.maab.jc_0481

Identify equal to operations (==) in expressions where at least one side of the expression
is a floating-point variable or constant.

Description

Do not use equal to operations with floating-point data types. You can use equal to
operations with integer data types.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Expressions use equal to operations (==)
where at least one side of the expression is
a floating-point variable or constant.

Modify the specified expressions to avoid
equal to operations between floating-
point expressions. If an equal to operation
is required, a margin of error should be
defined and used in the operation.

The Model Advisor could not determine
the data types in expressions with equality
operations.

To allow Model Advisor to determine the
data types, consider explicitly typecasting
the specified expressions.

Capabilities and Limitations

• Does not run on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

MAAB guideline, Version 3.0: jc_0481: Use of hard equality comparisons for floating
point numbers in Stateflow in the Simulink documentation.

3 Model Advisor Checks

3-210

Check input and output settings of MATLAB Functions

Check ID: mathworks.maab.na_0034

Identify MATLAB Functions that have inputs, outputs or parameters with inherited
complexity or data type properties.

Description

The check identifies MATLAB Functions with inherited complexity or data type
properties. A results table provides links to MATLAB Functions that do not pass the
check, along with conditions triggering the warning.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

MATLAB Functions have inherited
interfaces.

Explicitly define complexity and data
type properties for inports, outports,
and parameters of MATLAB Function
identified in the results.

If applicable, using the “MATLAB
Function Block Editor”, make the following
modifications in the “Ports and Data
Manager”:

• Change Complexity from Inherited
to On or Off.

• Change Type from Inherit: Same as
Simulink to an explicit type.

• Change Size from —1 (Inherited) to
an explicit size.

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.

 MathWorks Automotive Advisory Board Checks

3-211

• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: na_0034: MATLAB Function block input/output
settings in the Simulink documentation.

• JMAAB guideline, Version 4.0: na_0034: MATLAB Function block input/output
settings.

3 Model Advisor Checks

3-212

Check MATLAB Function metrics

Check ID: mathworks.maab.himl_0003

Display complexity and code metrics for MATLAB Functions. Report metric violations.

Description

This check provides complexity and code metrics for MATLAB Functions. The check
additionally reports metric violations.

A results table provides links to MATLAB Functions that violate the complexity input
parameters.

Available with Simulink Verification and Validation.

Input Parameters

Maximum effective lines of code per function
Provide the maximum effective lines of code per function. Effective lines do not
include empty lines, comment lines, or lines with a function end keyword.

Minimum density of comments
Provide minimum density of comments. Density is ratio of comment lines to total
lines of code.

Maximum cyclomatic complexity per function
Provide maximum cyclomatic complexity per function. Cyclomatic complexity is the
number of linearly independent paths through the source code.

Results and Recommended Actions

Condition Recommended Action

MATLAB Function violates the complexity
input parameters.

For the MATLAB Function:

• If effective lines of code is too high,
further divide the MATLAB Function.

• If comment density is too low, add
comment lines.

• If cyclomatic complexity per function is
too high, further divide the MATLAB
Function.

 MathWorks Automotive Advisory Board Checks

3-213

Capabilities and Limitations

• Runs on library models.
• Does not analyze content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: na_0016: Source lines of MATLAB Functions in the
Simulink documentation.

• MAAB guideline, Version 3.0: na_0018: Number of nested if/else and case statement
in the Simulink documentation.

• JMAAB guideline, Version 4.0: na_0016: Source lines of MATLAB Functions.
• JMAAB guideline, Version 4.0: na_0018: Number of nested if/else and case statement.

3 Model Advisor Checks

3-214

Check for mismatches between names of Stateflow ports and associated
signals

Check ID: mathworks.maab.db_0123

Check for mismatches between Stateflow ports and associated signal names.

Description

The name of Stateflow input and output should be the same as the corresponding signal.
The check does not flag name mismatches for reusable Stateflow charts in libraries.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Signals have names that differ from the
corresponding Stateflow ports.

Change the names of either the signals or
the Stateflow ports.

Capabilities and Limitations

• Does not run on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts. Exclusions will not work for library linked

charts.

See Also

• MAAB guideline, Version 3.0: db_0123: Stateflow port names in the Simulink
documentation.

• JMAAB guideline, Version 4.0: db_0123: Stateflow port names.

 MathWorks Automotive Advisory Board Checks

3-215

Check scope of From and Goto blocks

Check ID: mathworks.maab.na_0011

Check the scope of From and Goto blocks.

Description

You can use global scope for controlling flow. However, From and Goto blocks must use
local scope for signal flows.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

From and Goto blocks are not configured
with local scope.

• Make sure that the ports are connected.
• Change the scope of the specified blocks

to local.

Capabilities and Limitations

• Does not run on library models.
• Analyzes content of library linked blocks.
• Analyzes content in all masked subsystems.
• Allows exclusions of blocks and charts.

See Also

• MAAB guideline, Version 3.0: na_0011: Scope of Goto and From blocks in the
Simulink documentation.

3 Model Advisor Checks

3-216

Requirements Consistency Checks

In this section...

“Identify requirement links with missing documents” on page 3-217
“Identify requirement links that specify invalid locations within documents” on page
3-218
“Identify selection-based links having descriptions that do not match their requirements
document text” on page 3-219
“Identify requirement links with path type inconsistent with preferences” on page
3-221
“Identify IBM Rational DOORS objects linked from Simulink that do not link to
Simulink” on page 3-223

 Requirements Consistency Checks

3-217

Identify requirement links with missing documents

Check ID: mathworks.req.Documents

Verify that requirements link to existing documents.

Description

You used the Requirements Management Interface (RMI) to associate a design
requirements document with a part of your model design and the interface cannot find
the specified document.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The requirements document associated
with a part of your model design is not
accessible at the specified location.

Open the Requirements dialog box and
fix the path name of the requirements
document or move the document to the
specified location.

Capabilities and Limitations

You can exclude blocks and charts from this check.

Tips

If your model has links to a DOORS requirements document, to run this check, the
DOORS software must be open and you must be logged in.

See Also

“Maintenance of Requirements Links”

3 Model Advisor Checks

3-218

Identify requirement links that specify invalid locations within documents

Check ID: mathworks.req.Identifiers

Verify that requirements link to valid locations (e.g., bookmarks, line numbers, anchors)
within documents.

Description

You used the Requirements Management Interface (RMI) to associate a location in a
design requirements document (a bookmark, line number, or anchor) with a part of
your model design and the interface cannot find the specified location in the specified
document.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The location in the requirements document
associated with a part of your model design
is not accessible.

Open the Requirements dialog box and
fix the location reference within the
requirements document.

Capabilities and Limitations

You can exclude blocks and charts from this check.

Tips

If your model has links to a DOORS requirements document, to run this check, the
DOORS software must be open and you must be logged in.

If your model has links to a Microsoft Word or Microsoft Excel document, to run this
check, those applications must be closed on your computer.

See Also

“Maintenance of Requirements Links”

 Requirements Consistency Checks

3-219

Identify selection-based links having descriptions that do not match their
requirements document text

Check ID: mathworks.req.Labels

Verify that descriptions of selection-based links use the same text found in their
requirements documents.

Description

You used selection-based linking of the Requirements Management Interface (RMI) to
label requirements in the model's Requirements menu with text that appears in the
corresponding requirements document. This check helps you manage traceability by
identifying requirement descriptions in the menu that are not synchronized with text in
the documents.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Selection-based links have descriptions
that differ from their corresponding
selections in the requirements documents.

If the difference reflects a change in the
requirements document, click Update in
the Model Advisor results to replace the
current description in the selection-based
link with the text from the requirements
document (the external description).
Alternatively, you can right-click the object
in the model window, select Edit/Add
Links from the Requirements menu,
and use the Requirements dialog box that
appears to synchronize the text.

Capabilities and Limitations

You can exclude blocks and charts from this check.

Tips

If your model has links to a DOORS requirements document, to run this check, the
DOORS software must be open and you must be logged in.

3 Model Advisor Checks

3-220

If your model has links to a Microsoft Word or Microsoft Excel document, to run this
check, those applications must be closed on your computer.

See Also

“Maintenance of Requirements Links”

 Requirements Consistency Checks

3-221

Identify requirement links with path type inconsistent with preferences

Check ID: mathworks.req.Paths

Check that requirement paths are of the type selected in the preferences.

Description

You are using the Requirements Management Interface (RMI) and the paths specifying
the location of your requirements documents differ from the file reference type set as
your preference.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The paths indicating the location of
requirements documents use a file
reference type that differs from the
preference specified in the Requirements
Settings dialog box, on the Selection
Linking tab.

Change the preferred document file reference
type or the specified paths by doing one of the
following:

• Click Fix to change the current path to the
valid path.

• In the model window, select Analysis >
Requirements > Settings, select the
Selection Linking tab, and change the
value for the Document file reference
option.

Linux Check for Absolute Paths

On Linux® systems, this check is named Identify requirement links with absolute
path type. The check reports warnings for requirements links that use an absolute path.

The recommended action is:

1 Right-click the model object and select Requirements > Edit/Add Links.
2 Modify the path in the Document field to use a path relative to the current working

folder or the model location.

3 Model Advisor Checks

3-222

Capabilities and Limitations

You can exclude blocks and charts from this check.

See Also

“Maintenance of Requirements Links”

 Requirements Consistency Checks

3-223

Identify IBM Rational DOORS objects linked from Simulink that do not link
to Simulink

Identify IBM Rational DOORS objects that are targets of Simulink-to-DOORS
requirements traceability links, but that have no corresponding DOORS-to-Simulink
requirements traceability links.

Description

You have Simulink-to-DOORS links that do not have a corresponding link from DOORS
to Simulink. You must be logged in to the IBM Rational DOORS Client to run this check.

Available with Simulink Verification and Validation.

Results and Recommended Actions

The Requirements Management Interface (RMI) examines Simulink-to-DOORS links
to determine the presence of a corresponding return link. The RMI lists DOORS
objects that do not have a return link to a Simulink object. For such objects, create
corresponding DOORS-to-Simulink links:

1 Click the FixAll hyperlink in the RMI report to insert required links into the
DOORS client for the list of missing requirements links. You can also create
individual links by navigating to each DOORS item and creating a link to the
Simulink object.

2 Re-run the link check.

3 Model Advisor Checks

3-224

Model Metric Checks

In this section...

“Simulink block metric” on page 3-224
“Subsystem metric” on page 3-226
“Library link metric” on page 3-227
“Effective lines of MATLAB code metric” on page 3-228
“Stateflow chart objects metric” on page 3-229
“Lines of code for Stateflow blocks metric” on page 3-231
“Subsystem depth metric” on page 3-232
“Cyclomatic complexity metric” on page 3-233
“Nondescriptive block name metric” on page 3-235
“Data and structure layer separation metric” on page 3-235

Simulink block metric

Check ID: mathworks.metricchecks.SimulinkBlockCount

Display number of Simulink blocks in the model.

Description

Use this metric to calculate the number of blocks in the model. The results provide the
number of blocks at the model and subsystem level.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

N/A This summary is provided for your
information. No action is required.

Capabilities and Limitations

The metric:

 Model Metric Checks

3-225

• Runs on library models.
• Analyzes content in masked subsystems.
• Does not analyze the content of library-linked blocks or referenced models.

See Also

• sldiagnostics in the Simulink documentation

3 Model Advisor Checks

3-226

Subsystem metric

Check ID: mathworks.metricchecks.SubSystemCount

Display number of subsystems in the model.

Description

Use this metric to calculate the number of subsystems in the model. The results provide
the number of subsystems at the model and subsystem level.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

N/A This summary is provided for your
information. No action is required.

Capabilities and Limitations

The metric:

• Runs on library models.
• Analyzes content in masked subsystems.
• Does not analyze the content of library-linked blocks or referenced models.

See Also

• sldiagnostics in the Simulink documentation

 Model Metric Checks

3-227

Library link metric

Check ID: mathworks.metricchecks.LibraryLinkCount

Display number of library links in the model.

Description

Use this metric to calculate the number of library-linked blocks in the model. The results
provide the number of library-linked blocks at the model and subsystem level.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

N/A This summary is provided for your
information. No action is required.

Capabilities and Limitations

The metric:

• Runs on library models.
• Analyzes content in masked subsystems.
• Does not analyze the content of library-linked blocks or referenced models.

See Also

• sldiagnostics in the Simulink documentation

3 Model Advisor Checks

3-228

Effective lines of MATLAB code metric

Check ID: mathworks.metricchecks.MatlabLOCCount

Display number of effective lines of MATLAB code.

Description

Run this metric to calculate the number of effective lines of MATLAB code. The results
provide the number of effective lines of MATLAB code for each MATLAB function block
and for MATLAB functions in Stateflow charts. Effective lines of MATLAB code are lines
of executable code. Empty lines, lines that contain only comments, and lines that contain
only an end statement are not considered effective lines of code.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

N/A This summary is provided for your
information. No action is required.

Capabilities and Limitations

The metric:

• Runs on library models.
• Analyzes content in masked subsystems.
• Does not analyze the content of library-linked blocks or referenced models.
• Does not analyze the content of MATLAB code in external files.

See Also

• sldiagnostics in the Simulink documentation

 Model Metric Checks

3-229

Stateflow chart objects metric

Check ID: mathworks.metricchecks.StateflowChartObjectCount

Display the number of Stateflow objects in each chart.

Description

Run this metric to calculate the number of Stateflow objects. For each chart in the model,
the results provide the number of the following Stateflow objects:

• Atomic subcharts
• Boxes
• Data objects
• Events
• Graphical functions
• Junctions
• Linked charts
• MATLAB functions
• Notes
• Simulink functions
• States
• Transitions
• Truth tables

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

N/A This summary is provided for your
information. No action is required.

Capabilities and Limitations

The metric:

3 Model Advisor Checks

3-230

• Runs on library models.
• Analyzes content in masked subsystems.
• Does not analyze the content of library-linked blocks or referenced models.

See Also

• sldiagnostics in the Simulink documentation

 Model Metric Checks

3-231

Lines of code for Stateflow blocks metric

Check ID: mathworks.metricchecks.StateflowLOCCount

Display the number of lines of code for Stateflow blocks.

Description

Use this metric to calculate the number of code lines for the following Stateflow blocks in
the model.

• States
• Transitions
• Truth tables

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

N/A This summary is provided for your
information. No action is required.

Capabilities and Limitations

The metric:

• Runs on library models.
• Analyzes content in masked subsystems.
• Does not analyze the content of library-linked blocks or referenced models.

See Also

• sldiagnostics in the Simulink documentation

3 Model Advisor Checks

3-232

Subsystem depth metric

Check ID: mathworks.metricchecks.SubSystemDepth

Display the subsystem depth of the model.

Description

Use this metric to calculate the subsystem depth of the model. The results provide the
subsystem depth for each subsystem in the model.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

N/A This summary is provided for your
information. No action is required.

Capabilities and Limitations

The metric:

• Runs on library models.
• Analyzes content in masked subsystems.
• Does not analyze the content of library-linked blocks or referenced models.

See Also

• sldiagnostics in the Simulink documentation

 Model Metric Checks

3-233

Cyclomatic complexity metric

Check ID: mathworks.metricchecks.CyclomaticComplexity

Display the local and aggregated cyclomatic complexity of the model.

Description

Use this metric to calculate the cyclomatic complexity of the model. The results provide
the local and aggregated cyclomatic complexity for the:

• Model
• Subsystems
• Charts
• States in charts
• MATLAB functions

Local complexity is the cyclomatic complexity for objects at their hierarchical level.
Aggregated cyclomatic complexity is the cyclomatic complexity of an object and its
descendants.

Running the metric compiles the model with coverage enabled. If block reduction
is disabled for coverage, compilation can result in errors that do not occur during
simulation. If there are compilation errors, the metric cannot report the cyclomatic
complexity. To enable block reduction during coverage, in the Coverage Settings dialog
box, clear Force block reduction off. Alternatively, set configuration parameter
CovForceBlockReductionOff to off. When you select Force block reduction
off, the software ignores the model configuration parameter Block Reduction
(BlockReduction) setting during coverage collection.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

N/A This summary is provided for your
information. No action is required.

Model does not have cyclomatic complexity. No action required.

3 Model Advisor Checks

3-234

Capabilities and Limitations

The metric:

• Does not run on library models.
• Analyzes content in masked subsystems.
• Does not analyze the content of library-linked blocks or referenced models. However,

if a block contains a library-linked block, the metric does report the aggregated
cyclomatic complexity of the library-linked block.

See Also

• sldiagnostics in the Simulink documentation
• “Cyclomatic Complexity”
• “Specify Model Coverage Options”

 Model Metric Checks

3-235

Nondescriptive block name metric

Check ID: mathworks.metricchecks.DescriptiveBlockNames

Display nondescriptive Inport, Outport, and Subsystem block names.

Description

Run this metric to determine nondescriptive Inport, Outport, and Subsystem block
names. Default names appended with an integer are nondescriptive block names. The
results provide the nondescriptive block names at the model and subsystem level.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

N/A This summary is provided for your
information. No action is required.

Capabilities and Limitations

The metric:

• Runs on library models.
• Analyzes content in masked subsystems.
• Does not analyze the content of library-linked blocks or referenced models.

See Also

• sldiagnostics in the Simulink documentation

Data and structure layer separation metric

Check ID: mathworks.metricchecks.LayerSeparation

Display data and structure layer separation.

Description

Run this metric to calculate the data and structure layer separation. The results provide
the separation at the model and subsystem level.

3 Model Advisor Checks

3-236

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

N/A This summary is provided for your
information. No action is required.

Capabilities and Limitations

The metric:

• Runs on library models.
• Analyzes content in masked subsystems.
• Does not analyze the content of library-linked blocks or referenced models.

See Also

• MAAB 3.0 guideline db_0143: Similar block types on the model levels.
• sldiagnostics in the Simulink documentation

4

Model Metrics API

4 Model Metrics API

4-2

Model Metrics Results API

Instances of slmetric.metric.Result contain the metric data for a model component. The
table summarizes the metric data for each of the available metrics. For more information
about the model metric values, see “Model Metrics”.

MetricID Value AggregatedValue Measures

mathworks.metrics.SimulinkBlockCountNumber of blocks Number of blocks for
component and its
descendents

Same as Value

mathworks.metrics.SubSystemCountNumber of
subsystems

Number of
subsystems for
component and its
descendents

Same as Value

mathworks.metrics.LibraryLinkCountNumber of library
linked blocks

Number of library
linked blocks for
component and its
descendents

Same as Value

mathworks.metrics.MatlabLOCCountNumber of effective
lines of MATLAB
code

Number of effective
lines of MATLAB
code for component
and its descendents

Same as Value

mathworks.metrics.StateflowChartObjectCountNumber of Stateflow
objects

Number of
Stateflow objects for
component and its
descendents

Not applicable

mathworks.metrics.StateflowLOCCountNumber of Stateflow
block code lines

Number of Stateflow
block code lines for
component and its
descendents

Not applicable

mathworks.metrics.SubSystemDepthSubsystem level,
starting from
AnalysisRoot

Not applicable Array [maximum
depth starting from
the component to
its leaf nodes in the
subsystem hierarchy,
same as Value]

 Model Metrics Results API

4-3

MetricID Value AggregatedValue Measures

mathworks.metrics.CyclomaticComplexityLocal cyclomatic
complexity

Aggregated
cyclomatic
complexity

Not applicable

mathworks.metrics.DescriptiveBlockNamesNumber of
nondescriptive
Inport, Outport, and
Subsystem block
names

Number of
nondescriptive
Inport, Outport, and
Subsystem block
names for component
and its descendents

1-D vector [total
number of Inport
blocks, number
of Inport blocks
with nondescriptive
names, total
number of Outport
blocks, number
of Outport blocks
with nondescriptive
names, total number
of Subsystem
blocks, number of
Subsystem blocks
with nondescriptive
names]

mathworks.metrics.LayerSeparationNumber of basic
blocks on a
structural level

Number of basic
blocks on a
structural level for
component and its
descendents

Not applicable

See Also
slmetric.Engine | slmetric.metric.ResultCollection

Related Examples
• “Collect Model Metrics Programmatically”

More About
• “Model Metrics”

5

SLCov CSH Entries

5 SLCov CSH Entries

5-2

Simulink Coverage Parameters

RecordCoverage

Command-Line Information

RecordCoverage If RecordCoverage is set
to on, Simulink collects
and reports model coverage
data during simulation.
The format of this report is
controlled by the values of
the following parameters:

CovCompData

CovCumulativeReport

CovCumulativeVarName

CovHTMLOptions

CovHtmlReporting

CovMetricSettings

CovModelRefEnable

CovModelRefExcluded

CovNameIncrementing

CovPath

CovReportOnPause

CovSaveCumulativeToWork-

SpaceVar

CovSaveName

string — 'on' | {'off'}

 Simulink Coverage Parameters

5-3

CovSaveSingleToWorkspace-

Var

If set to off, model
coverage data is not
collected or reported.

Set by Coverage for this
model: <model name> on
the Coverage pane of the
Coverage Settings dialog
box.

5 SLCov CSH Entries

5-4

Simulink Coverage Parameters

CovPath

Command-Line Information

CovPath Model path of the
subsystem for which the
Simulink Verification and
Validation software gathers
and reports coverage data.

Set by selecting Coverage
for this model: <model
name> on the Coverage
pane of the Coverage
Settings dialog box and then
clicking Select Subsystem.

string — {'/'}

 Simulink Coverage Parameters

5-5

Simulink Coverage Parameters

CovSaveName

Command-Line Information

CovSaveName If
CovSaveSingleToWorkspace-

Var is set to on, the
Simulink Verification
and Validation software
saves the results of the
last simulation run in the
workspace variable specified
by this property.

Set by cvdata object name
below the selected Save
last run in workspace
variable check box on
the Results pane of the
Coverage Settings dialog
box.

string — {'covdata'}

5 SLCov CSH Entries

5-6

Simulink Coverage Parameters

CovCompData

Command-Line Information

CovCompData If CovHtmlReporting
is set to on and
CovCumulativeReport is
set to on, this parameter
specifies cvdata objects
containing additional model
coverage data to include in
the model coverage report.

Set by Additional data
to include in report
(cvdata objects) on the
Reporting pane of the
Coverage Settings dialog
box.

string — {''}

 Simulink Coverage Parameters

5-7

Simulink Coverage Parameters

CovMetricSettings

Command-Line Information

CovMetricSettings Selects coverage metrics for
a coverage report.

Coverage metrics are
enabled by selecting the
check boxes for individual
coverages in the Coverage
metrics section of the
Coverage pane of the
Coverage Settings dialog
box.

Enable options 's' and
'w' by selecting Treat
Simulink Logic blocks
as short-circuited and
Warn when unsupported
blocks exist in model,
respectively, on the
Options pane of the
Coverage Settings dialog
box.

Disable option 'e'
by selecting Display
coverage results using
model coloring on the
Results pane of the
Coverage Settings dialog
box.

string — {'dw'}

Each order-independent
character in the string
enables a coverage metric or
option as follows:

• 'd' — Enable decision
coverage

• 'c' — Enable condition
coverage

• 'm' — Enable MCDC
coverage

• 't' — Enable lookup
table coverage

• 'r' — Enable signal
range coverage

• 'z' — Enable signal size
coverage

• 'o' — Enable coverage
for Simulink Design
Verifier blocks

• 'i' — Enable saturation
on integer overflow
coverage

• 'b' — Enable relational
boundary coverage

• 's' — Treat Simulink
logic blocks as short-
circuited

5 SLCov CSH Entries

5-8

• 'w' — Warn when
unsupported blocks exist
in model

• 'e' — Eliminate model
coloring for coverage
results

 Simulink Coverage Parameters

5-9

Simulink Coverage Parameters

CovFilter

The full path of the filter file that specifies model objects that you want to exclude from
model coverage collection during simulation. You can only use files that have the valid
.cvf filter file format.

5 SLCov CSH Entries

5-10

Simulink Coverage Parameters

CovHTMLOptions

Command-Line Information

CovHTMLOptions If CovHtmlReporting
is set to on, use this
parameter to select from a
set of display options for the
resulting model coverage
report.

Select these options in
the Reporting tab of the
Coverage Settings dialog
box.

String of appended character
sets separated by a space.
HTML options are enabled
or disabled through a value
of 1 or 0, respectively, in
the following character sets
(default values shown):

• '-sRT=1' — Show report
• '-sVT=0' — Web view

mode
• '-aTS=1' — Include

each test in the model
summary

• '-bRG=1' — Produce
bar graphs in the model
summary

• '-bTC=0' — Use two
color bar graphs (red,
blue)

• '-hTR=0' — Display hit/
count ratio in the model
summary

• '-nFC=0' — Do not
report fully covered model
objects

• '-scm=1' — Include
cyclomatic complexity
numbers in summary

 Simulink Coverage Parameters

5-11

• '-bcm=1' — Include
cyclomatic complexity
numbers in block details

• '-xEv=0' — Filter
Stateflow events from
report

5 SLCov CSH Entries

5-12

Simulink Coverage Parameters

CovNameIncrementing

Command-Line Information

CovNameIncrementing If
CovSaveSingleToWorkspace-

Var is set to on, setting
CovNameIncrementing

to on causes the Simulink
Verification and Validation
software to append
numerals to the workspace
variable names for results
so that earlier results
are not overwritten (for
example, covdata1,
covdata2, etc.)

Set by Increment
variable name with each
simulation below the
selected Save last run in
workspace variable check
box on the Results pane
of the Coverage Settings
dialog box.

string — 'on' | {'off'}

 Simulink Coverage Parameters

5-13

Simulink Coverage Parameters

CovHtmlReporting

Command-Line Information

CovHtmlReporting Set to on to tell the
Simulink Verification
and Validation software
to create an HTML
report containing the
coverage data at the end of
simulation.

Set by Generate HTML
report on the Reporting
pane of the Coverage
Settings dialog box.

string — {'on'} | 'off'

5 SLCov CSH Entries

5-14

Simulink Coverage Parameters

CovForceBlockReductionOff

Command-Line Information

CovForceBlockReductionOffIf
CovForceBlockReductionOff

is set to on, the Simulink
Verification and Validation
software ignores the value
of the Simulink Block
reduction parameter. The
software provides coverage
data for every block in the
model that collects coverage.

string — {'on'} | 'off'

 Simulink Coverage Parameters

5-15

Simulink Coverage Parameters

CovEnableCumulative

Accumulates model coverage results from successive simulations. Set this and
CovSaveCumulativeToWorkspaceVar to on to collect model coverage results for
multiple simulations in one cvdata object. For more information, see “Cumulative
Coverage Data”.

5 SLCov CSH Entries

5-16

Simulink Coverage Parameters

CovSaveCumulativeToWorkspaceVar

Command-Line Information

CovSaveCumulativeTo-

WorkspaceVar

If set to on, the Simulink
Verification and Validation
software accumulates
and saves the results of
successive simulations
in the workspace
variable specified by
CovCumulativeVarName.

Set by Save cumulative
results in workspace
variable on the Results
pane of the Coverage
Settings dialog box.

string — {'on'} | 'off'

 Simulink Coverage Parameters

5-17

Simulink Coverage Parameters

CovSaveSingleToWorkspaceVar

Command-Line Information

CovSaveSingleTo-

WorkspaceVar

If set to on, the Simulink
Verification and Validation
software saves the results
of the last simulation run
in the workspace variable
specified by CovSaveName.

Set by Save last run in
workspace variable on
the Results pane of the
Coverage Settings dialog
box.

string — {'on'} | 'off'

5 SLCov CSH Entries

5-18

Simulink Coverage Parameters

CovCumulativeVarName

Command-Line Information

CovCumulativeVarName If CovSaveCumulativeTo-
WorkspaceVar is set
to on, the Simulink
Verification and Validation
software saves the results
of successive simulations
in the workspace variable
specified by this property.

Set by cvdata object name
below the selected Save
cumulative results in
workspace variable check
box on the Results pane
of the Coverage Settings
dialog box.

string —
{'covCumulativeData'}

 Simulink Coverage Parameters

5-19

Simulink Coverage Parameters

CovCumulativeReport

Command-Line Information

CovCumulativeReport If CovHtmlReporting
is set to on, this
parameter allows the
CovCumulativeReport

and CovCompData
parameters to specify the
number of coverage results
displayed in the model
coverage report.

If set to on, the Simulink
Verification and Validation
software displays the
coverage results from
successive simulations in
the report.

If set to off, the software
displays the coverage
results for the last
simulation in the report.

Set by the Cumulative
runs (on) / Last run (off)
options on the Reporting
pane of the Coverage
Settings dialog box.

string — 'on' | {'off'}

5 SLCov CSH Entries

5-20

Simulink Coverage Parameters

CovReportOnPause

Command-Line Information

CovReportOnPause Specifies that when you
pause during simulation,
the model coverage report
appears in updated form,
with coverage results up to
the current pause or stop
time.

Set by Update results on
pause on the Results pane
of the Coverage Settings
dialog box.

string — {'on'} | 'off'

 Simulink Coverage Parameters

5-21

Simulink Coverage Parameters

CovModelRefEnable

Command-Line Information

CovModelRefEnable If CovModelRefEnable
is set to on or all, the
Simulink Verification
and Validation software
generates coverage data
for all referenced models. If
CovModelRefEnable is set
to filtered, coverage data
is collected for all referenced
models except those
specified by the parameter
CovModelRefExcluded.

Set by Coverage for
referenced models on
the Coverage pane of the
Coverage Settings dialog
box.

string — 'on' | {'off'}
| 'all' | 'filtered'

5 SLCov CSH Entries

5-22

Simulink Coverage Parameters

CovModelRefExcluded

Command-Line Information

CovModelRefExcluded If CovModelRefEnable
is set to filtered, this
parameter stores a comma-
separated list of referenced
models for which coverage is
disabled.

Set by selecting Coverage
for referenced models
on the Coverage pane
of the Coverage Settings
dialog box and then clicking
Select Models.

string — {''}

 Simulink Coverage Parameters

5-23

Simulink Coverage Parameters

CovExternalEMLEnable

Command-Line Information

CovExternalEMLEnable Enables coverage for
external MATLAB functions
that MATLAB functions
for code generation call in
your model. The functions
can be defined in a MATLAB
Function block or in a
Stateflow chart. Enable
this feature by checking
Coverage for MATLAB
Files on the Coverage
Settings dialog box.

string — 'on' | {'off'}

5 SLCov CSH Entries

5-24

Simulink Coverage Parameters

CovSFcnEnable

Command-Line Information

CovSFcnEnable Enables coverage for C/C++
S-Function blocks in your
model. Enable this feature
by checking Coverage for
C/C++ S-Functions on the
Coverage Settings dialog
box. For more information,
see “Model Coverage for C
and C++ S-Functions” in
Simulink Verification and
Validation documentation.

string — 'on' | {'off'}

 Simulink Coverage Parameters

5-25

Simulink Coverage Parameters

CovBoundaryAbsTol

Boundary Tolerance — Absolute

Specifies the value of absolute tolerance for relational boundary coverage of floating point
inputs. For more information, see “Relational Boundary Coverage”.

5 SLCov CSH Entries

5-26

Simulink Coverage Parameters

CovBoundaryRelTol

Boundary Tolerance — Relative

Specifies the value of relative tolerance for relational boundary coverage of floating point
inputs. For more information, see “Relational Boundary Coverage”.

 Simulink Coverage Parameters

5-27

Simulink Coverage Parameters

CovUseTimeInterval

Restrict recording to interval

To record model coverage only inside a specified simulation time interval,
setCovUseTimeInterval to 'on' and define a CovStartTime and CovStopTime.
Model coverage is not recorded for simulation times outside CovStartTime and
CovStopTime. If your simulation starts at a time greater than or equal to CovStopTime,
model coverage is not recorded.

For example, you might want to restrict model coverage recording if your model has
transient effects early in simulation, or if you need model coverage reported only for a
particular model operation.

5 SLCov CSH Entries

5-28

Simulink Coverage Parameters

CovStartTime

Coverage Start Time

To record model coverage only inside a specified simulation time interval,
setCovUseTimeInterval to 'on' and define a CovStartTime and CovStopTime.
Model coverage is not recorded for simulation times outside CovStartTime and
CovStopTime. If your simulation starts at a time greater than or equal to CovStopTime,
model coverage is not recorded.

For example, you might want to restrict model coverage recording if your model has
transient effects early in simulation, or if you need model coverage reported only for a
particular model operation.

 Simulink Coverage Parameters

5-29

Simulink Coverage Parameters

CovStopTime

Coverage Stop Time

To record model coverage only inside a specified simulation time interval,
setCovUseTimeInterval to 'on' and define a CovStartTime and CovStopTime.
Model coverage is not recorded for simulation times outside CovStartTime and
CovStopTime. If your simulation starts at a time greater than or equal to CovStopTime,
model coverage is not recorded.

For example, you might want to restrict model coverage recording if your model has
transient effects early in simulation, or if you need model coverage reported only for a
particular model operation.

